共查询到11条相似文献,搜索用时 15 毫秒
1.
Traffic flow theory has come to a point where conventional, fixed time averaged data are limiting our insight into critical behavior both at the macroscopic and microscopic scales. This paper develops a methodology to measure relationships of density and vehicle spacing on freeways. These relationships are central to most traffic flow theories but have historically been difficult to measure empirically. The work leads to macroscopic flow-density and microscopic speed-spacing relationships in the congested regime derived entirely from dual loop detector data and then verified against the NGSIM data set. The methodology eliminates the need to seek out stationary conditions and yields clean relationships that do not depend on prior assumptions of the curve shape before fitting the data. Upon review of the clean empirical relationships a key finding of this work is the fact that many of the critical parameters of the macroscopic flow-density and microscopic speed-spacing relationships depend on vehicle length, e.g., upstream moving waves should travel through long vehicles faster than through short vehicles. Thus, the commonly used assumption of a homogeneous vehicle fleet likely obscures these important phenomena. More broadly, if waves travel faster or slower depending on the length of the vehicles through which the waves pass, then the way traffic is modeled should be updated to explicitly account for inhomogeneous vehicle lengths. 相似文献
2.
Traffic operations for new road layouts are often simulated using microscopic traffic simulation packages. These traffic simulation packages usually simulate traffic on freeways by a combination of a car-following model and a lane change model. The car-following models have gained attention of researchers and are well calibrated versus data. The proposed lane change models are often representations of assumed reasonable behavior, not necessarily corresponding to reality. The current simulation packages apply solely one specific type of model for car-following or lane changing for all vehicles during the simulation. This paper investigates the decision process of lane changing maneuvers for a variety of drivers based on a two-stage test-drive. Participants are asked to take a drive on a freeway in the Netherlands in a camera-equipped vehicle. Afterwards, the drivers are asked to comment on their choices related to lane and speed choice, while watching the video. This paper reveals that different drivers have completely different strategies to choose lanes, and the choices to change lane are related to their speed choice. Four distinct strategies are empirically found. These strategies differ not only in parameter values, as is currently being modeled in most simulation packages, but also in their reasoning. Most remarkably, all drivers perceive their strategy as an obvious behavior and expect all other drivers to drive in a similar way. In addition to the interviews of the participants in the test-drive, 11 people who did not take part in the experiment were interviewed and questioned on lane change decisions. Moreover, the findings of this study have been presented to various groups of audience with different backgrounds (about 150 people). Their comments and feedback on the derived driving strategies have added some value to this study. The findings in this paper form a starting point for developing a novel lane change model which considers four different driving strategies among the drivers on freeway. This is a significant contribution in the area of driving behavior modeling, since the existing microscopic simulators consider only one type of lane change models for all drivers during the simulation. This could lead to significant changes in the way lane changes on freeways are modeled. 相似文献
3.
A grid based modelling approach akin to cellular automata (CA) is adopted for heterogeneous traffic flow simulation. The road space is divided into a grid of equally sized cells. Moreover, each vehicle type occupies one or more cell as per its size unlike CA traffic flow model where each vehicle is represented by a single cell. Model needs inputs such as vehicle size, its maximum speed, acceleration, deceleration, probability constants, and arrival pattern. The position and speed of the vehicles are assumed to be discrete. The speed of each vehicle changes according to its interactions with other vehicles, following some stochastic rules depending on the circumstances. The model is calibrated and validated using real data and VISSIM. The results indicate that grid based model can reasonably well simulate complex heterogeneous traffic as well as offers higher computational efficiency needed for real time application. 相似文献
4.
This paper derives a five-parameter social force car-following model that converges to the kinematic wave model with triangular fundamental diagram. Analytical solutions for vehicle trajectories are found for the lead-vehicle problem, which exhibit clockwise and counter-clockwise hysteresis depending on the model’s parameters and the lead vehicle trajectory. When coupled with a stochastic vehicle dynamics module, the model is able to reproduce periods and amplitudes of stop-and-go waves, as reported in the field. The model’s stability conditions are analysed and its trajectories are compared to real data. 相似文献
5.
Benjamin Coifman Seoungbum Kim 《Transportation Research Part A: Policy and Practice》2011,45(9):980-991
This paper presents evidence that the commonly used point bottleneck model is too simplistic for freeway bottlenecks, the actual mechanism appears to occur over an extended distance. We find evidence of subtle flow limiting and speed reducing phenomena more than a mile downstream of a lane drop bottleneck. These phenomena impact the fundamental relationship, FD. Close to the lane drop the free flow regime appears to come from a “parabolic” FD, but further downstream the relationship straightens to a “triangular” FD and throughput increases. We develop a theory to explain the underlying mechanisms. These insights should help resolve the decades long debate about the shape of the FD. The phenomena also provide a mechanism that may contribute to the empirically observed capacity drop often seen at bottlenecks. Although we study a lane drop, this work should be transferable to other bottlenecks where the capacity restriction persists for an extended distance, e.g., a corridor with a fixed number of lanes and an on-ramp bottleneck. 相似文献
6.
In an effort to uncover traffic conditions that trigger discharge rate reductions near active bottlenecks, this paper analyzed individual vehicle trajectories at a microscopic level and documented the findings. Based on an investigation of traffic flow involving diverse traffic situations, a driver’s tendency to take a significant headway after passing stop-and-go waves was identified as one of the influencing factors for discharge rate reduction. Conversely, the pattern of lane changers caused a transient increase in the discharge rate until the situation was relaxed after completing the lane-changing event. Although we observed a high flow from the incoming lane changers, the events ultimately caused adverse impacts on the traffic such that the disturbances generated stop-and-go waves. Based on this observation, we regard upstream lane changes and stop-and-go waves as the responsible factors for the decreased capacity at downstream of active bottlenecks. This empirical investigation also supports the resignation effect, the regressive effect, and the asymmetric behavioral models in differentiating acceleration and deceleration behaviors. 相似文献
7.
The kinetic theory for traffic flow equations can be approached using the Grad’s method. This method, which is derived from the kinetic gas theory, was developed for the Paveri-Fontana equation when a special desired velocity model is assumed. A closure relation for the set of macroscopic equations is found when the density, the average velocity and the velocity variance are the relevant variables chosen to describe the system. Simulation results are also shown and a qualitative comparison with other models in the literature is presented. 相似文献
8.
Weaving sections, where a merge and a diverge are in close proximity, are considered as crucial bottlenecks in the highway network. Lane changes happen frequently in such sections, leading to a reduced capacity and the traffic phenomenon known as capacity drop. This paper studies how the emerging automated vehicle technology can improve the operations and increase the capacity of weaving sections. We propose an efficient yet effective multiclass hybrid model that considers two aspects of this technology in scenarios with various penetration rates: (i) the potential to control the desired lane change decisions of automated vehicles, which is represented in a macroscopic manner as the distribution of lane change positions, and (ii) the lower reaction time associated with automated vehicles that can reduce headways and the required gaps for lane changing maneuvers. The proposed model is successfully calibrated and validated with empirical observations from conventional vehicles at a weaving section near the city of Basel, Switzerland. It is able to replicate traffic dynamics in weaving sections including the capacity drop. This model is then applied in a simulation-based optimization framework that searches for the optimal distribution of the desired lane change positions to maximize the capacity of weaving sections. Simulation results show that by optimizing the distribution of the desired lane change positions, the capacity of the studied weaving section can increase up to 15%. The results also indicate that if the reaction time is considered as well, there is an additional combined effect that can further increase the capacity. Overall, the results show the great potential of the automated vehicle technology for increasing the capacity of weaving sections. 相似文献
9.
Under the Connected Vehicle environment where vehicles and road-side infrastructure can communicate wirelessly, the Advanced Driver Assistance Systems (ADAS) can be adopted as an actuator for achieving traffic safety and mobility optimization at highway facilities. In this regard, the traffic management centers need to identify the optimal ADAS algorithm parameter set that leads to the optimization of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. Once the ADAS-equipped drivers implement the optimal parameter set, they become active agents that work cooperatively to prevent traffic conflicts, and suppress the development of traffic oscillations into heavy traffic jams. Measuring systematic effectiveness of this traffic management requires am analytic capability to capture the quantified impact of the ADAS on individual drivers’ behaviors and the aggregated traffic safety and mobility improvement due to such an impact. To this end, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through a multi-objective optimization approach that uses the Genetic Algorithm. The developed methodology is tested at a freeway facility under low, medium and high ADAS market penetration rate scenarios. The case study reveals that fine-tuning the ADAS algorithm parameter can significantly improve the throughput and reduce the traffic delay and conflicts at the study site in the medium and high penetration scenarios. In these scenarios, the ADAS algorithm parameter optimization is necessary. Otherwise the ADAS will intensify the behavior heterogeneity among drivers, resulting in little traffic safety improvement and negative mobility impact. In the high penetration rate scenario, the identified optimal ADAS algorithm parameter set can be used to support different control objectives (e.g., safety improvement has priority vs. mobility improvement has priority). 相似文献
10.
In this paper, a novel freeway traffic speed estimation method based on probe data is presented. In contrast to other traffic speed estimators, it only requires velocity data from probes and does not depend on any additional data inputs such as density or flow information. In the first step the method determines the three traffic phases free flow, synchronized flow, and Wide Moving Jam (WMJ) described by Kerner et al. in space and time. Subsequently, reported data is processed with respect to the prevailing traffic phase in order to estimate traffic velocities. This two-step approach allows incorporating empirical features of phase fronts into the estimation procedure. For instance, downstream fronts of WMJs always propagate upstream with approximately constant velocity, and downstream fronts of synchronized flow phases usually stick to bottlenecks. The second step assures the validity of measured velocities is limited to the extent of its assigned phase. Effectively, velocity information in space-time can be estimated more distinctively and the result is therefore more accurate even if the input data density is low.The accuracy of the proposed Phase-Based Smoothing Method (PSM) is evaluated using real floating car data collected during two traffic congestions on the German freeway A99 and compared to the performance of the Generalized Adaptive Smoothing Method (GASM) as well as a naive algorithm. The quantitative and qualitative results show that the PSM reconstructs the congestion pattern more accurately than the other two. A subsequent analysis of the computational efficiency and sensitivity demonstrates its practical suitability. 相似文献
11.
Vincenzo Punzo Maria Teresa Borzacchiello Biagio Ciuffo 《Transportation Research Part C: Emerging Technologies》2011,19(6):1243-1262
Trajectories drawn in a common reference system by all the vehicles on a road are the ultimate empirical data to investigate traffic dynamics. The vast amount of such data made freely available by the Next Generation SIMulation (NGSIM) program is therefore opening up new horizons in studying traffic flow theory. Yet the quality of trajectory data and its impact on the reliability of related studies was a vastly underestimated problem in the traffic literature even before the availability of NGSIM data. The absence of established methods to assess data accuracy and even of a common understanding of the problem makes it hard to speak of reproducibility of experiments and objective comparison of results, in particular in a research field where the complexity of human behaviour is an intrinsic challenge to the scientific method. Therefore this paper intends to design quantitative methods to inspect trajectory data. To this aim first the structure of the error on point measurements and its propagation on the space travelled are investigated. Analytical evidence of the bias propagated in the vehicle trajectory functions and a related consistency requirement are given. Literature on estimation/filtering techniques is then reviewed in light of this requirement and a number of error statistics suitable to inspect trajectory data are proposed. The designed methodology, involving jerk analysis, consistency analysis and spectral analysis, is then applied to the complete set of NGSIM databases. 相似文献