首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper explores how advanced reservations, coupled with dynamic pricing (based on booking limits) can be used to maximize parking revenue. An integer programing formulation that maximizes parking revenue over a system of garages is presented. Furthermore, an intelligent parking reservation model is developed that uses an artificial neural network procedure for online reservation decision-making. Finally, the paper provides some strategic and managerial implications of multi-garage revenue management systems, and discusses techniques for identifying and implementing micro-market segmentation in the parking industry.  相似文献   

2.
Despite rapid advances of information technologies for intelligent parking systems, it remains a challenge to optimally manage limited parking resources in busy urban neighborhoods. In this paper, we use dynamic location-dependent parking pricing and reservation to improve system-wide performance of an intelligent parking system. With this system, the parking agency is able to decide the spatial and temporal distribution of parking prices to achieve a variety of objectives, while drivers with different origins and destinations compete for limited parking spaces via online reservation. We develop a multi-period non-cooperative bi-level model to capture the complex interactions among the parking agency and multiple drivers, as well as a non-myopic approximate dynamic programming (ADP) approach to solve the model. It is shown with numerical examples that the ADP-based pricing policy consistently outperforms alternative policies in achieving greater performance of the parking system, and shows reliability in handling the spatial and temporal variations in parking demand.  相似文献   

3.
Parking problem becomes one of major issues in the city transportation management since the spatial resource of a city is limited and the parking cost is expensive. Lots of cars on the road should spend unnecessary time and consume energy during searching for parking due to limited parking space. To cope with these limitations and give more intelligent solutions to drivers in the selection of parking facility, this study proposes a smart parking guidance algorithm. The proposed algorithm supports drivers to find the most appropriate parking facility considering real-time status of parking facilities in a city. To suggest the most suitable parking facility, several factors such as driving distance to the guided parking facility, walking distance from the guided parking facility to destination, expected parking cost, and traffic congestion due to parking guidance, are considered in the proposed algorithm. To evaluate the effectiveness of the proposed algorithm, simulation tests have been carried out. The proposed algorithm helps to maximize the utilization of space resources of a city, and reduce unnecessary energy consumption and CO2 emission of wandering cars since it is designed to control the utilization of parking facility efficiently and reduce traffic congestion due to parking space search.  相似文献   

4.
In this paper, we define the online localized resource allocation problem, especially relevant for modeling transportation applications. The problem modeling takes into account simultaneously the geographical location of consumers and resources together with their online nondeterministic appearance. We use urban parking management as an illustration of this problem. In fact, urban parking management is an online localized resource allocation problem, where the question is how to find an efficient allocation of parking spots to drivers, while they all have dynamic geographical positions and appear nondeterministically. We define this problem and propose a multiagent system to solve it. The objective of the system is to decrease, for private vehicles drivers, the parking spots search time. The drivers are organized in communities and share information about spots availability. We have defined two cooperative models and compared them: a fully cooperative model, where agents share all the available information, and a “coopetitive” model, where drivers do not share information about the spot that they have chosen. Results show the superiority of the first model.  相似文献   

5.
This paper reviews the empirical evidence relating to the impact of parking policy measures on the demand for parking and for travel. Disaggregate modal choice models, disaggregate parking location models and site‐specific studies of parking behaviour are examined. With regard to modal choice models, it is concluded that few studies deal adequately with parking factors, but that there is some support for the view that parking policy measures are a relatively important influence on modal choice. When parking location models are examined parking policy variables are shown to have a substantial impact on choice of parking location. With regard to site‐specific studies, the paper concludes that there is a great variation in the parking price elasticities quoted, which reflects partly the methodological problems associated with such studies. Suggestions to improve model specification are made.  相似文献   

6.
Morning commuters may have to depart from home earlier to secure a parking space when parking supply in the city center is insufficient. Recent studies show that parking reservations can reduce highway congestion and deadweight loss of parking competition simultaneously. This study develops a novel tradable parking permit scheme to realize or implement parking reservations when commuters are either homogeneous or heterogeneous in their values of time. It is found that an expirable parking permit scheme with an infinite number of steps, i.e., the ideal-scheme, is superior to a time-varying pricing scheme in the sense that designing a permit scheme does not require commuters’ value of time information and the performance of the scheme is robust to the variation of commuters’ value of time. Although it is impractical to implement the ideal-scheme with an infinite number of steps, the efficiency loss of a permit scheme with finite steps can be bounded in both cases of homogeneous and heterogeneous commuters. Moreover, considering the permit scheme may lead to an undesirable benefit distribution among commuters, we propose an equal cost-reduction distribution of parking permits where auto commuters with higher value of time will receive fewer permits.  相似文献   

7.
ABSTRACT

This paper explores car drivers’ cruising behaviour and location choice for curb parking in areas with insufficient parking space based on a survey of car drivers in Beijing, China. Preliminary analysis of the data show that car drivers’ cruising behaviour is closely related to their parking duration and parking location. A multinomial probit (MNP) model is used to analyse cruising behaviour and the results show that the closer to the destination car drivers are, the more likely they choose to park on the curb. The adjacent locations are the basis of car drivers’ sequential parking decisions at different locations. The research results provide a better understanding of cruising behaviour for parking and recommendations for reducing cruising for parking. The provision of parking information can help regulate the parking demand distribution.  相似文献   

8.
《运输评论》2012,32(1):54-75
ABSTRACT

The organisation of parking is a key challenge to more sustainable mobility in urban areas, as its pricing and availability affect the rates of private car ownership and use. However, changing parking policies is a challenging issue for local politicians and planners because residents frequently oppose changes or restrictions to conditions they have taken for granted such as on-street parking in a public space. The aim of this paper is firstly to assess how the parking policy of an urban neighbourhood can be structured to contribute to more sustainable mobility and to increase liveability in the neighbourhood. The second aim is to apply the policies reviewed to an example neighbourhood. For this purpose, we systematically reviewed academic literature and identified five types of relevant parking policies: (i) maximum parking requirements, (ii) physical detachment of residence and parking space, (iii) residential parking permits and the limitation of available parking space, (iv) performance-based pricing and (v) parking as a demand management strategy. We discovered that most research focuses on econometric models about parking and that studies rarely address the effects of parking on the quality of life in neighbourhoods. Therefore, we need further research regarding the relationship of parking and liveability. We conclude that for the implementation of such parking policies in an example neighbourhood, the municipality needs to develop a mobility vision for its city. It has to understand parking as a tool for transportation demand management to increase the acceptance of parking policy concepts and to avoid spillover problems. Finally, in the German case, as in most other countries, states and municipalities need to redesign their legal frameworks to be able to manage parking supply better and to react to changes related to digital developments and parking. The findings have implications for other European neighbourhoods regarding the transfer from research to local circumstances and applications for the whole city.  相似文献   

9.
In the last two decades parking has increasingly gained importance in urban planning. Despite the growing number of papers published in recent years, an overall conceptualization of parking policy is still missing. Previous attempts (Shoup, 2005; Litman, 2006; Barter, 2010) focus mainly on the North American planning experience. We try to bridge this gap analysing the evolution of parking policy in Europe. In this paper we first present the key aspects of parking policy, and describe their generic evolution. Next we suggest a novel approach for parking policy making. We conclude by discussing some of the major challenges policy makers will face in the near future regarding parking in urban areas.  相似文献   

10.
Allocating movable resources dynamically enables evacuation management agencies to improve evacuation system performance in both the spatial and temporal dimensions. This study proposes a mixed integer linear program (MILP) model to address the dynamic resource allocation problem for transportation evacuation planning on large-scale networks. The proposed model is built on the earliest arrival flow formulation that significantly reduces problem size. A set of binary variables, specifically, the beginning and the ending time of resource allocation at a location, enable a strong formulation with tight constraints. A solution algorithm is developed to solve for an optimal solution on large-scale network applications by adopting Benders decomposition. In this algorithm, the MILP model is decomposed into two sub-problems. The first sub-problem, called the restricted master problem, identifies a feasible dynamic resource allocation plan. The second sub-problem, called the auxiliary problem, models dynamic traffic assignment in the evacuation network given a resource allocation plan. A numerical study is performed on the Dallas–Fort Worth network. The results show that the Benders decomposition algorithm can solve an optimal solution efficiently on a large-scale network.  相似文献   

11.
ABSTRACT

This paper describes the development of a probabilistic formulation that provides global optimum selection and allocation of a fleet of buses in a private transportation system of an organization where a third party is hired to provide transportation for its employees and their dependents. In this private transportation system, a fleet of buses is to be selected and allocated to serve employees and their independents on different prescheduled trips along different routes from the organization’s headquarters and residential compound where round-trip times of scheduled trips are subject to uncertainty due to random delays. We propose a probabilistic approach based on 0-1 integer programming for the selection and allocation to determine the optimal number and size of buses assigned to a set of prescheduled trips in a particular time interval. Examples and a case study are presented to illustrate the applicability and suitability of the proposed approach.  相似文献   

12.
In order to maintain a growing road infrastructure at some minimum level of service, substantial resources are required on a recurrent basis. Of late, the available resources can no longer meet all the maintenance and rehabilitation demand even in wealthy nations. Hence, there is a need to develop a tool which will optimally allocate these resources in order to keep the road infrastructure as ‘healthy’ as possible. Further, this tool must acknowledge that maintenance needs are not only restricted to structural aspects but also extend to the functional- and safety-related aspects of a road. Here, such a comprehensive optimization tool is developed which when used will optimally allocate resources in order to maintain a healthy (from structural, functional, and safety standpoints) road network. The problem of determining the optimum maintenance and rehabilitation activities for individual road sections is formulated as a linear integer programming problem. Results from a case study using the proposed method show that the suggested maintenance and rehabilitation plans make sense from engineering and economic considerations.  相似文献   

13.
Autonomous vehicles have the potential to improve link and intersection traffic behavior. Computer reaction times may admit reduced following headways and increase capacity and backwards wave speed. The degree of these improvements will depend on the proportion of autonomous vehicles in the network. To model arbitrary shared road scenarios, we develop a multiclass cell transmission model that admits variations in capacity and backwards wave speed in response to class proportions within each cell. The multiclass cell transmission model is shown to be consistent with the hydrodynamic theory. This paper then develops a car following model incorporating driver reaction time to predict capacity and backwards wave speed for multiclass scenarios. For intersection modeling, we adapt the legacy early method for intelligent traffic management (Bento et al., 2013) to general simulation-based dynamic traffic assignment models. Empirical results on a city network show that intersection controls are a major bottleneck in the model, and that the legacy early method improves over traffic signals when the autonomous vehicle proportion is sufficiently high.  相似文献   

14.
This paper presents a mathematical model to plan emergencies in a densely populated urban zone where a certain numbers of pedestrians depend on transit for evacuation. The proposed model features an integrated operational framework, which simultaneously guides evacuees through urban streets and crosswalks (referred to as “the pedestrian network”) to designated pickup points (e.g., bus stops), and routes a fleet of buses at different depots to those pick‐up points and transports evacuees to their destinations or safe places. In this level, the buses are routed through the so‐called “vehicular network.” An integrated mixed integer linear program that can effectively take into account the interactions between the aforementioned two networks is formulated to find the maximal evacuation efficiency in two networks. Because the large instances of the proposed model are mathematically difficult to solve to optimality, a two‐stage heuristic is developed to solve larger instances of the model. Results from hundreds of numerical examples analysis indicate that proposed heuristic works well in providing (near) optimal or feasibly good solutions for medium‐scale to large‐scale instances that may arise in real transit‐based evacuation situations in a much shorter amount of computational time compared with cplex (can find optimal/feasible solutions for only five instances within 3 hours of running). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Every aircraft, military or civilian, must be grounded for maintenance after it has completed a certain number of flight hours since its last maintenance check. In this paper, we address the problem of deciding which available aircraft should fly and for how long, and which grounded aircraft should perform maintenance operations, in a group of aircraft that comprise a combat unit. The objective is to achieve maximum availability of the unit over the planning horizon. We develop a multiobjective optimization model for this problem, and we illustrate its application and solution on a real life instance drawn from the Hellenic Air Force. We also propose two heuristic approaches for solving large scale instances of the problem. We conclude with a discussion that gives insight into the behavior of the model and of the heuristics, based on the analysis of the results obtained.  相似文献   

16.
Automobile use leads to external costs associated with emissions, congestion, noise and other impacts. One option for minimizing these costs is to introduce road pricing and parking charges to reduce demand for single occupant vehicle (SOV) use, while providing improvements to alternatives to encourage mode switching. However, the impact of these policies on urban mode choice is uncertain, and results reported from regions where charging has been introduced may not be transferable. In particular, revealed preference data associated with cost recovery tolls on single facilities may not provide a clear picture of driver response to tolls for demand management. To estimate commuter mode choice behaviour in response to such policies, 548 commuters from a Greater Vancouver suburb who presently drive alone to work completed an individually customized discrete choice experiment (DCE) in which they chose between driving alone, carpooling or taking a hypothetical express bus service when choices varied in terms of time and cost attributes. Attribute coefficients identified with the DCE were used in a predictive model to estimate commuter response to various policy oriented combinations of charges and incentives. Model results suggest that increases in drive alone costs will bring about greater reductions in SOV demand than increases in SOV travel time or improvements in the times and costs of alternatives beyond a base level of service. The methods described here provide an effective and efficient way for policy makers to develop an initial assessment of driver reactions to the introduction of pricing policies in their particular regions.  相似文献   

17.
Autonomous vehicle (AV) technology holds great promise for improving the efficiency of traditional vehicle sharing systems. In this paper, we investigate a new vehicle sharing system using AVs, referred to as autonomous vehicle sharing and reservation (AVSR). In such a system, travelers can request AV trips ahead of time and the AVSR system operator will optimally arrange AV pickup and delivery schedules and AV trip chains based on these requests. A linear programming model is proposed to efficiently solve for optimal solutions for AV trip chains and required fleet size through constructed AVSR networks. Case studies show that AVSR can significantly increase vehicle use rate (VUR) and consequentially reduce vehicle ownership significantly. In the meantime, it is found that the actual vehicle miles traveled (VMT) in AVSR systems is not significantly more than that of conventional taxis, despite inevitable empty hauls for vehicle relocation in AVSR systems. The results imply huge potential benefits from AVSR systems on improving mobility and sustainability of our current transportation systems.  相似文献   

18.
This study analyzes the potential benefits and drawbacks of taxi sharing using agent-based modeling. New York City (NYC) taxis are examined as a case study to evaluate the advantages and disadvantages of ride sharing using both traditional taxis (with shifts) and shared autonomous taxis. Compared to existing studies analyzing ride sharing using NYC taxi data, our contributions are that (1) we proposed a model that incorporates individual heterogeneous preferences; (2) we compared traditional taxis to autonomous taxis; and (3) we examined the spatial change of service coverage due to ride sharing. Our results show that switching from traditional taxis to shared autonomous taxis can potentially reduce the fleet size by 59% while maintaining the service level and without significant increase in wait time for the riders. The benefit of ride sharing is significant with increased occupancy rate (from 1.2 to 3), decreased total travel distance (up to 55%), and reduced carbon emissions (up to 866 metric tonnes per day). Dynamic ride sharing, wich allows shared trips to be formed among many groups of riders, up to the taxi capacity, increases system flexibility. Constraining the sharing to be only between two groups limits the sharing participation to be at the 50–75% level. However, the reduced fleet from ride sharing and autonomous driving may cause taxis to focus on areas of higher demands and lower the service levels in the suburban regions of the city.  相似文献   

19.
This paper presents a modelling and optimisation framework for deriving ramp metering and variable speed control strategies. We formulate the optimal control problems aiming to minimise the travel delay on motorways based upon a macroscopic cell transmission model of traffic. The optimal ramp metering optimisation is formulated as a linear programming (LP) while the variable speed control problem is formulated as a mixed integer LP. The optimisation models are applied to a real scenario over a section of M25 motorway in the UK. This paper also includes various analyses on the sensitivity of the optimal control solutions with respect to different network configurations and model assumptions.  相似文献   

20.
Bhat  Chandra R.  Misra  Rajul 《Transportation》1999,26(2):193-229
This paper formulates a model for the allocation of total weekly discretionary time of individuals between in-home and out- of-home locations and between weekdays and the weekend. The model formulation takes the form of a continuous utility-maximizing resource allocation problem. The formulation is applied to an empirical analysis using data drawn from a 1985 time-use survey conducted in the Netherlands. This survey gathered time-use information from individuals over a period of one week and also collected detailed household-personal socio-demographic data. The empirical analysis uses household socio-demographics, individual socio-demographics, and work-related characteristics as the explanatory variables. Among the explanatory variables, age of the individual and work duration during the weekdays appear to be the most important determinants of discretionary time allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号