首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To contend with congestion and spillback on commuting arterials, serving as connectors between freeway and surface-street flows, this paper presents three multi-path progression models to offer progression bands for multiple critical path-flows contributing to the high volume in each arterial link. The first proposed model is a direct extension of MAXBAND under a predetermined phasing plan, but using the path-flow data to yield the progression bands. The second model further takes the phase sequence at each intersection as a decision variable, and concurrently optimizes the signal plans with offsets for the entire arterial. Due to the competing nature of multi-path progression flows over the same green duration, the third model is proposed with a function to automatically select the optimal number of paths in their bandwidths maximization process. The results of extensive simulation studies have shown that the proposed models outperform conventional design methods, such as MAXBAND or TRANSYT, especially for those arterials with multiple heavy path-flows. The research results from this study have also reflected the need to collect more traffic pattern data such as major path-flow volumes, in addition to the typical intersection volume counts.  相似文献   

2.
We propose a novel real-time network-wide traffic signal control scheme which is (1) applicable under modern data technologies, (2) flexible in response to variations of traffic flows due to its non-cyclic feature, (3) operable on a network-wide and real-time basis, and (4) capable of considering expected route flows in the form of long-term green time ratios for intersection movement. The proposed system has a two-level hierarchical architecture: (1) strategy level and (2) control level. Considering the optimal states for a long-term period found in the strategy level, the optimal signal timings for a short-term period are calculated in the control level which consists of two steps: (1) queue weight update and (2) signal optimization. Based on the ratio of the cumulative green time to the desired green time is the first step to update the queue weights, which are then used in the optimization to find signal timings for minimum total delay. A parametric queue weight function is developed, discussed and evaluated. Two numerical experiments were given. The first demonstrated that the proposed system performs effectively, and the second shows its capability in a real-world network.  相似文献   

3.
Real‐time signal control operates as a function of the vehicular arrival and discharge process to satisfy a pre‐specified operational performance. This process is often predicted based on loop detectors placed upstream of the signal. In our newly developed signal control for diamond interchanges, a microscopic model is proposed to estimate traffic flows at the stop‐line. The model considers the traffic dynamics of vehicular detection, arrivals, and departures, by taking into account varying speeds, length of queues, and signal control. As the signal control is optimized over a rolling horizon that is divided into intervals, the vehicular detection for and projection into the corresponding horizon intervals are also modeled. The signal control algorithm is based on dynamic programming and the optimization of signal policy is performed using a certain performance measure involving delays, queue lengths, and queue storage ratios. The arrival–discharge model is embedded in the optimization algorithm and both are programmed into AIMSUN, a microscopic stochastic simulation program. AIMSUN is then used to simulate the traffic flow and implement the optimal signal control by accessing internal data including detected traffic demand and vehicle speeds. Sensitivity analysis is conducted to study the effect of selecting different optimization criteria on the signal control performance. It is concluded that the queue length and queue storage ratio are the most appropriate performance measures in real‐time signal control of interchanges. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Vehicle speed trajectory significantly impacts fuel consumption and greenhouse gas emissions, especially for trips on signalized arterials. Although a large amount of research has been conducted aiming at providing optimal speed advisory to drivers, impacts from queues at intersections are not considered. Ignoring the constraints induced by queues could result in suboptimal or infeasible solutions. In this study, a multi-stage optimal control formulation is proposed to obtain the optimal vehicle trajectory on signalized arterials, where both vehicle queue and traffic light status are considered. To facilitate the real-time update of the optimal speed trajectory, a constrained optimization model is proposed as an approximation approach, which can be solved much quicker. Numerical examples demonstrate the effectiveness of the proposed optimal control model and the solution efficiency of the proposed approach.  相似文献   

5.
In this paper a new traffic flow model for congested arterial networks, named shockwave profile model (SPM), is presented. Taking advantage of the fact that traffic states within a congested link can be simplified as free-flow, saturated, and jammed conditions, SPM simulates traffic dynamics by analytically deriving the trajectories of four major shockwaves: queuing, discharge, departure, and compression waves. Unlike conventional macroscopic models, in which space is often discretized into small cells for numerical solutions, SPM treats each homogeneous road segment with constant capacity as a section; and the queuing dynamics within each section are described by tracing the shockwave fronts. SPM is particularly suitable for simulating traffic flow on congested signalized arterials especially with queue spillover problems, where the steady-state periodic pattern of queue build-up and dissipation process may break down. Depending on when and where spillover occurs along a signalized arterial, a large number of queuing patterns may be possible. Therefore it becomes difficult to apply the conventional approach directly to track shockwave fronts. To overcome this difficulty, a novel approach is proposed as part of the SPM, in which queue spillover is treated as either extending a red phase or creating new smaller cycles, so that the analytical solutions for tracing the shockwave fronts can be easily applied. Since only the essential features of arterial traffic flow, i.e., queue build-up and dissipation, are considered, SPM significantly reduces the computational load and improves the numerical efficiency. We further validated SPM using real-world traffic signal data collected from a major arterial in the Twin Cities. The results clearly demonstrate the effectiveness and accuracy of the model. We expect that in the future this model can be applied in a number of real-time applications such as arterial performance prediction and signal optimization.  相似文献   

6.
License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival–departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications.  相似文献   

7.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The performance of signalized arterials is related to queuing phenomena. The paper investigates the effect of transitional traffic flow conditions imposed by the formation and dissipation of queues. A cross-recurrence quantification analysis combined with Bayesian augmented networks are implemented to reveal the prevailing statistical characteristics of the short-term traffic flow patterns under the effect of transitional queue conditions. Results indicate that transitions between free-flow conditions, critical queue conditions that exceed the detector’s length, as well as the occurrence of spillovers impose a set of prevailing traffic flow patterns with different statistical characteristics with respect to determinism, nonlinearity, non-stationarity and laminarity. The complexity in critical queue conditions is further investigated by introducing two supplementary regions in the critical area before spillover occurrence. Results indicate that the supplementary information on the transitional conditions in the critical area increases the accuracy of the predictive relations between the statistical characteristics of traffic flow evolution and the occurrence of transitions.  相似文献   

9.
Despite extensive studies have been reported to address the operational issues of full Continuous Flow Intersection (CFI) in the literature, the asymmetric two-leg CFI, which is more applicable in practice, has not received adequate attentions yet. To satisfy such need, this study develops two signal optimization models for asymmetric CFI based on its unique geometric features. The first proposed model, following a two-step procedure, determines the cycle length, phase design and sequence, and green split in the first step and optimizes intersection offset in the second step. To benefit both intersections’ capacity maximization and signal progression design by optimizing phase plan and sequence, the second proposed model takes the Mixed-Integer-Linear-Programming (MILP) technique to concurrently optimize all signal control variables. With extensive case studies on a field site in Maryland, the simulation results prove that the proposed models can effectively provide signal progression to critical path-flows and prevent the potential queue spillover on the short turning bays/links. Further comparisons between the two proposed models reveal that the second model is more flexible in designing phase plan but the first model performs better in reducing link queue length.  相似文献   

10.
This paper presents a real-time signal control system that optimizes signal settings based on minimization of person delay on arterials. The system’s underlying mixed integer linear program minimizes person delay by explicitly accounting for the passenger occupancy of autos and transit vehicles. This way it can provide signal priority to transit vehicles in an efficient way even when they travel in conflicting directions. Furthermore, it recognizes the importance of schedule adherence for reliable transit operations and accounts for it by assigning an additional weighting factor on transit delays. This introduces another criterion for resolving the issue of assigning priority to conflicting transit routes. At the same time, the system maintains auto vehicle progression by introducing the appropriate delays associated with interruptions of platoons. In addition to the fact that it utilizes readily available technologies to obtain the inputs for the optimization, the system’s feasibility in real-world settings is enhanced by its low computation time. The proposed signal control system is tested on a four-intersection segment of San Pablo Avenue arterial located in Berkeley, California. The findings show the system’s capability to outperform pretimed (i.e., fixed-time) optimal signal settings by reducing total person delay. They have also demonstrated its success in reducing bus person delay by efficiently providing priority to transit vehicles even when they travel in conflicting directions.  相似文献   

11.
This paper investigates the combination effects of queue jump lanes (QJLs) on signalised arterials to establish if a multiplier effect exists, that is, the benefit from providing QJLs at multiple intersections is higher than the sum of benefits from providing them individually at each of those intersections. To explore the combination effects on bus delay and total person delay, a delay estimation model is developed using kinematic wave theory, kinematic equations and Monte Carlo simulation. In addition, to investigate the combination effects in offset settings optimised for bus delay or total person delay, offset optimisation models are proposed. Validation results using traffic micro‐simulation indicate the effectiveness and computational efficiency of the proposed models. Results of a modelling test bed suggest that providing QJLs at multiple intersections can create a multiplier effect on one‐directional bus delay savings with signal offsets that provide bus progression. Furthermore, optimising offsets to minimise bus delay tends to create a multiplier effect on one‐directional bus delay savings, particularly when variations in dwell times are not high. The reason for the multiplier effect may be that providing QJLs reduces variations in bus travel times, which makes signal coordination for buses perform more effectively. From a policy perspective, the existence of a multiplier effect suggests that a corridor‐wide scale implementation of QJLs has considerable merit. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In urban emergency evacuation, a potentially large number of evacuees may depend either on transit or other modes, or need to walk a long distance, to access their passenger cars. In the process of approaching the designated pick-up points or parking areas for evacuation, the massive number of pedestrians may cause tremendous burden to vehicles in the roadway network. Responsible agencies often need to contend with congestion incurred by massive vehicles emanating from parking garages, evacuation buses generated from bus stops, and the conflicts between evacuees and vehicles at intersections. Hence, an effective plan for such evacuation needs to concurrently address both the multi-modal traffic route assignment and the optimization of network signal controls for mixed traffic flows. This paper presents an integrated model to produce the optimal distribution of vehicle and pedestrian flows, and the responsive network signal plan for massive mixed pedestrian–vehicle flows within the evacuation zone. The proposed model features its effectiveness in accounting for multiple types of evacuation vehicles, the interdependent relations between pedestrian and vehicle flows via some conversion locations, and the inevitable conflicts between intersection turning vehicle and pedestrian flows. An illustrating example concerning an evacuation around the M&T stadium area has been presented, and the results indicate the promising properties of our proposed model, especially on reflecting the complex interactions between vehicle and pedestrian flows and the favorable use of high-occupancy vehicles for evacuation operations.  相似文献   

13.
The paper focuses on Network Traffic Control based on aggregate traffic flow variables, aiming at signal settings which are consistent with within-day traffic flow dynamics. The proposed optimisation strategy is based on two successive steps: the first step refers to each single junction optimisation (green timings), the second to network coordination (offsets). Both of the optimisation problems are solved through meta-heuristic algorithms: the optimisation of green timings is carried out through a multi-criteria Genetic Algorithm whereas offset optimisation is achieved with the mono-criterion Hill Climbing algorithm. To guarantee proper queuing and spillback simulation, an advanced mesoscopic traffic flow model is embedded within the network optimisation method. The adopted mesoscopic traffic flow model also includes link horizontal queue modelling. The results attained through the proposed optimisation framework are compared with those obtained through benchmark tools.  相似文献   

14.
Anticipatory signal control in traffic networks adapts the signal timings with the aim of controlling the resulting (equilibrium) flows and route choice patterns in the network. This study investigates a method to support control decisions for successful applications in real traffic systems that operate repeatedly, for instance from day to day, month to month, etc. The route choice response to signal control is usually predicted through models; however this leads to suboptimality because of unavoidable prediction errors between model and reality. This paper proposes an iterative optimizing control method to drive the traffic network towards the real optimal performance by observing modeling errors and correcting for them. Theoretical analysis of this Iterative Optimizing Control with Model Bias Correction (IOCMBC) on matching properties between the modeled optimal solution and the real optimum is presented, and the advantages over conventional iterative schemes are demonstrated. A local convergence analysis is also elaborated to investigate conditions required for a convergent scheme. The main innovation is the calculation of the sensitivity (Jacobian) information of the real route choice behavior with respect to signal control variables. To avoid performing additional perturbations, we introduce a measurement-based implementation method for estimating the operational Jacobian that is associated with the reality. Numerical tests confirm the effectiveness of the proposed IOCMBC method in tackling modeling errors, as well as the influence of the optimization step size on the reality-tracking convergence.  相似文献   

15.
We study how to estimate real time queue lengths at signalized intersections using intersection travel times collected from mobile traffic sensors. The estimation is based on the observation that critical pattern changes of intersection travel times or delays, such as the discontinuities (i.e., sudden and dramatic increases in travel times) and non-smoothness (i.e., changes of slopes of travel times), indicate signal timing or queue length changes. By detecting these critical points in intersection travel times or delays, the real time queue length can be re-constructed. We first introduce the concept of Queue Rear No-delay Arrival Time which is related to the non-smoothness of queuing delay patterns and queue length changes. We then show how measured intersection travel times from mobile sensors can be processed to generate sample vehicle queuing delays. Under the uniform arrival assumption, the queuing delays reduce linearly within a cycle. The delay pattern can be estimated by a linear fitting method using sample queuing delays. Queue Rear No-delay Arrival Time can then be obtained from the delay pattern, and be used to estimate the maximum and minimum queue lengths of a cycle, based on which the real-time queue length curve can also be constructed. The model and algorithm are tested in a field experiment and in simulation.  相似文献   

16.
This paper presents an integrated model to design routing and signal plans for massive mixed pedestrian‐vehicle flows within the evacuation zone. The proposed model, with its embedded formulations for pedestrians and vehicles in the same evacuation network, can effectively take their potential conflicts into account and generate the optimal routing strategies to guide evacuees toward either the pickup locations or their parking areas during an evacuation. The proposed model, enhancing the cell transmission model with the notion of sub‐cells, mainly captures the complex movements in the vehicle‐pedestrian flows and can concurrently optimizes both the signals for pedestrian‐vehicle flows and the movement paths for evacuees. An illustrating example concerning the evacuation around the M&T Bank Stadium area has been used to demonstrate the application potential of the proposed model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The paper investigates the efficiency of a recently developed signal control methodology, which offers a computationally feasible technique for real-time network-wide signal control in large-scale urban traffic networks and is applicable also under congested traffic conditions. In this methodology, the traffic flow process is modeled by use of the store-and-forward modeling paradigm, and the problem of network-wide signal control (including all constraints) is formulated as a quadratic-programming problem that aims at minimizing and balancing the link queues so as to minimize the risk of queue spillback. For the application of the proposed methodology in real time, the corresponding optimization algorithm is embedded in a rolling-horizon (model-predictive) control scheme. The control strategy’s efficiency and real-time feasibility is demonstrated and compared with the Linear-Quadratic approach taken by the signal control strategy TUC (Traffic-responsive Urban Control) as well as with optimized fixed-control settings via their simulation-based application to the road network of the city centre of Chania, Greece, under a number of different demand scenarios. The comparative evaluation is based on various criteria and tools including the recently proposed fundamental diagram for urban network traffic.  相似文献   

18.
This study proposes Reinforcement Learning (RL) based algorithm for finding optimum signal timings in Coordinated Signalized Networks (CSN) for fixed set of link flows. For this purpose, MOdified REinforcement Learning algorithm with TRANSYT-7F (MORELTRANS) model is proposed by way of combining RL algorithm and TRANSYT-7F. The modified RL differs from other RL algorithms since it takes advantage of the best solution obtained from the previous learning episode by generating a sub-environment at each learning episode as the same size of original environment. On the other hand, TRANSYT-7F traffic model is used in order to determine network performance index, namely disutility index. Numerical application is conducted on medium sized coordinated signalized road network. Results indicated that the MORELTRANS produced slightly better results than the GA in signal timing optimization in terms of objective function value while it outperformed than the HC. In order to show the capability of the proposed model for heavy demand condition, two cases in which link flows are increased by 20% and 50% with respect to the base case are considered. It is found that the MORELTRANS is able to reach good solutions for signal timing optimization even if demand became increased.  相似文献   

19.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号