首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Green-Naghdi (G-N) theory is a fully nonlinear theory for water waves. Some researchers call it a fully nonlinear Boussinesq model. Different degrees of complexity of G-N theory are distinguished by “levels” where the higher the level, the more complicated and presumably more accurate the theory is. In the research presented here a comparison was made between two different levels of G-N theory, specifically level II and level III G-N restricted theories. A linear analytical solution for level III G-N restricted theory was given. Waves on a planar beach and shoaling waves were both simulated with these two G-N theories. It was shown for the first time that level III G-N restricted theory can also be used to predict fluid velocity in shallow water. A level III G-N restricted theory is recommended instead of a level II G-N restricted theory when simulating fully nonlinear shallow water waves.  相似文献   

2.
Two-dimensional and three-dimensional Green-Naghdi (GN) models equipped with a numerical wave-absorbing beach have been developed to simulate nonlinear, regular, and irregular wave propagation. The numerical beach is introduced near the downstream boundary to absorb outgoing waves. An appropriate amount of numerical damping and an appropriate length of numerical beach are investigated using numerical experiments. The results show that the GN models with a numerical beach work very well in simulating wave propagation in water in a small computational domain.  相似文献   

3.
GM(1, 1) is generally used in Grey System Theory which constructs an Ordinary Differential Equation for given se-ries. It is effective for monotone series, and its simulating effect is good and error is small. However, If the series dosen' t havea property of monotone, the simulating effect of GM(1,1) is not fine, and its error gets bigger. In this paper, we use GM(2,1) to handle the oxcillation series, which uses the Method of Minimum Squares in determining the uncertain parameters.The  相似文献   

4.
This study aims at quantifying the distribution of REEs associated with chemical weathering processes, as well as investigating weathering mechanisms and source regions of the Gaoping (formerly spelled Kaoping) River (KPR) catchment basin located at southwestern Taiwan. Spatial distributions of dissolved rare earth elements, as well as major ions, trace elements and Sr isotopes in river waters were analyzed using SF-ICPMS and TIMS. Our results indicate that REE concentrations and patterns predominantly reflect sources and intensity of chemical weathering along the river's catchment. Most specimens have high Na/Cl (4.2–30.1 mol/mol) ratios due to strong weathering intensity in the upper stream. The Na/Ca and Mg/Ca ratios suggest the main contribution is from weathering of silicates and carbonates. Total concentrations of REEs are rather low in the Gaoping (Kaoping) River (6.7–15.4 ng/L), possibly influenced by adsorption onto suspended particles. The REE patterns also reflect source heterogeneity in weathering minerals with large LREE depletion and MREE enrichment. Europium is strongly enriched in the Gaoping (Kaoping) River water, as a result of its preferential dissolution from suspended particles. Unique Gadolinium anomaly is present in all specimens, likely related to contamination due to clinic waste disposal. Small fractionations of LREE/HREE have occurred along the KPR and can be used as a distinct signature for source identification. The main stream samples exhibit a relatively wide range of 87Sr/86Sr, 0.71265–0.71360, with a systematical increase downstream due to source mixing of dissolved basalt (less radiogenic) and sedimentary rocks. Each tributary shows distinct Sr isotope signatures due to different rock types and ages. These isotopic and elemental compositions provide important information on weathering source and erosion budget.  相似文献   

5.
The East Sea (Sea of Japan) is a unique marginal sea because it exhibits features of oceanic dynamics of much larger ocean basins. This semi-enclosed basin may be considered as a model or microcosm for understanding of how biological processes and distributions in pelagic ecosystem are interacting with physical processes in highly dynamic ocean regions. This overview summarizes the recent progresses concerning spatial and temporal variability of pelagic ecosystem components form an interdisciplinary point of view. Spatial characteristics of physical environments and biogeography in the region are distinguished mainly by the subpolar front. It was also found that long-term changes in biomass and community structure as well as those in the physical and biological environments are associated with climate variability in the region. We conclude by identifying main needs for the information and researches, particularly regular and long-term sampling, and permanent monitoring if possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号