首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究曲线钢混凝土组合梁桥各种设计参数对于其剪力滞效应的影响,通过有限元软件Midas FEA建立不同参数情况下的曲线钢混凝土组合梁桥模型,并进行非线性分析,得到其横桥向的剪力滞曲线,结果表明:曲率半径越大,剪力滞系数越小;混凝土板厚度越大,剪力滞系数越小;钢梁高度越高,剪力滞系数越小。研究结论:曲率半径对全桥整体的剪力滞效应影响较大,而混凝土板厚度与钢梁高度对应于混凝土板与钢梁底板剪力滞效应有所影响。  相似文献   

2.
为改善钢-混组合梁负弯矩区混凝土易开裂缺点,引入工程水泥基复合材料(ECC)和超高性能混凝土(UHPC)代替普通混凝土(NC)形成钢-ECC/UHPC组合梁,展开了1片钢-NC组合梁、1片钢-ECC组合梁和2片钢-UHPC组合梁的负弯矩区静力试验;结合有限元分析方法对比了不同类型混凝土的应变、裂缝扩展与分布特点,分析了混凝土类型和配筋对钢-混组合梁破坏形态、承载能力与变形能力影响规律。研究结果表明:钢-混组合梁在负弯矩作用下整体协同工作性能良好,破坏形态均为弯曲破坏;ECC和UHPC裂缝呈现纤细的特点,ECC尤为明显;与钢-NC组合梁相比,钢-ECC组合梁和钢-UHPC组合梁的开裂荷载分别提高了2.00和2.75倍,抗弯刚度分别提高了17.23%和35.73%,抗弯承载力分别提高了9.00%和6.81%,表明UHPC抗裂能力更强,可以有效改善钢-混组合梁负弯矩区桥面板抗裂性能,ECC与UHPC代替NC可以提高钢-混组合梁的抗弯刚度和承载力;配筋与无筋钢-UHPC组合梁的开裂荷载和前期刚度无显著差异,无筋钢-UHPC组合梁破坏时形成贯通裂缝,其承载力相比配筋钢-UHPC组合梁下降了13....  相似文献   

3.
高强钢-混凝土组合梁受力性能分析   总被引:2,自引:0,他引:2  
为研究高强钢-混凝土组合梁中结构几何参数及材料强度对组合梁受力性能的影响,建立了14组构件在跨中两点对称荷载作用下的有限元数值模型,对其受力性能进行了分析。分析结果表明:在承载能力极限状态下,钢梁的贡献占竖向抗剪强度约77.0%;在弹性与塑性阶段,不同材料强度的组合梁的跨中最小与最大挠度比值分别为79.5%和28.0%;在塑性状态下,不同混凝土板横向配筋率和宽度的组合梁的跨中最小与最大挠度比值分别为62.1%和53.3%,不同材料强度、混凝土板宽度、横向配筋率和厚度的组合梁的最小与最大纵向滑移量比值分别为25.0%、41.9%、63.2%、70.7%。可见,提高钢梁强度或增大钢梁尺寸可显著提高组合梁竖向抗剪能力;材料强度对组合梁弹性工作阶段的跨中挠度影响较小,混凝土板横向配筋率及其宽度对塑性状态下跨中挠度有较大影响;弹性工作阶段材料与几何参数对组合面滑移的影响不明显,塑性状态下材料强度、混凝土板宽度、横向配筋率及厚度对纵向滑移影响较大。  相似文献   

4.
由于钢-混凝土组合箱梁桥比同跨度的混凝土梁桥要轻,因此在车辆荷载作用下,车桥动力相互作用更加明显。为了更精确地分析其动力响应及冲击系数,采用ANSYS软件建立了钢-混凝土简支组合箱梁桥的车桥有限元模型,分析了不同车辆荷载作用下简支组合箱梁桥的动力特性;根据简支梁跨中的最大动位移与最大静位移之比,计算了不同结构参数下钢-混凝土简支组合箱梁桥的冲击系数。结果表明:在常见速度范围内,车辆过桥速度对冲击系数的影响总体呈上升趋势;对于同等跨度桥梁,双轮荷载激起的桥梁最大跨中挠度和冲击系数均比单轮荷载作用时小,但前者引起的跨中最大加速度远大于后者,且这种现象随荷载过桥速度的增大而明显。说明对于质量相对较轻的公路钢-混凝土组合箱梁桥,在冲击系数的确定中应考虑较高速度下不同车辆模型的影响。  相似文献   

5.
为了深入分析剪滞效应对预应力钢-混凝土组合梁结构的影响,提出了一种新型的宽翼缘双箱钢-混凝土组合梁结构并进行试验研究,探讨了该结构在跨中集中荷载作用下组合梁的应力、应变,及挠度随荷载变化的特征。基于最小势能原理,并假定翘曲位移形函数,建立控制微分方程组,推导出了考虑剪滞效应、预应力增量作用下的应变及挠度函数表达式。结合算例,在线弹性范围内,对该组合梁结构进行了剪滞效应对比分析,结果表明:其误差在15%以内。  相似文献   

6.
为探究剪力连接度对钢-混凝土组合梁桥力学性能的影响,以某跨径40m的简支钢-混凝土组合箱梁桥为依托,分析剪力连接度对结构的抗弯承载力、相对滑移和破坏模式的影响。结果表明:当剪力连接度<0.75时,组合梁桥的抗弯承载力与弹塑性阶段的抗弯刚度随剪力连接度的增大而增大,相对滑移随剪力连接度的增大而减小;当剪力连接度≥0.75时,剪力连接度的增加对组合梁桥受力影响较小。调研统计发现,目前国内钢-混凝土组合梁桥剪力连接度的取值较为保守,综合考虑工程结构的受力性能与经济性,建议钢-混凝土组合梁桥剪力连接度的取值范围为0.75~1.25。  相似文献   

7.
李春入 《交通标准化》2011,(15):134-138
从预应力混凝土梁的实测弯曲裂缝参数着手,根据裂缝特征沿主梁纵向分布的不同,运用相似裂缝的处理原则,将主梁划分为阶梯形刚度分布梁,基于裂缝特征计算开裂预应力混凝土梁各开裂区段的有效刚度,给出基于阶梯形刚度特征的开裂预应力混凝土简支梁挠度的计算方法,计算各级荷载下开裂预应力混凝土梁的挠度,并与试验值进行对比。  相似文献   

8.
唐娟 《北方交通》2023,(1):16-19
为优化钢-混组合梁剪力键设计,依托某钢-混组合梁桥,使用midas有限元设计软件分析了组合梁桥运营阶段结构变形、抗剪强度、钢梁和混凝土板应力、剪力键应力幅、支座反力等力学性能,结果满足规范要求,在此基础上对剪力键类型和设置间距开展研究,研究表明:剪力键类型和设置间距对组合梁界面滑移影响较大,设置柔性剪力键的方案,结构滑移量较大,剪力键类型和设置间距对挠度有一定影响,但对钢-混组合梁结构应力影响不明显。剪力键刚度越小,设置间距越大,钢-混组合梁成桥变形越大。研究结果可供类似工程设计参考。  相似文献   

9.
结合某3×40 m装配式钢—预应力混凝土连续组合梁桥施工图设计实例,采用Midas Civil v.2010对结构进行建模和静力分析,结果表明该桥在承载能力极限状态下的截面强度和正常使用极限状态下的应力及挠度均满足规范要求。  相似文献   

10.
根据钢和混凝土的应力应变关系,提出该组合梁考虑钢与混凝土界面相对滑移的力学性能分析方法,并由此编制计算分析程序,求解竖向集中荷载作用下组合梁的承载力、荷载-挠度曲线以及钢与混凝土的相对滑移分布,并通过与试验对比,表明按该文分析方法得出的结论与试验吻合较好。  相似文献   

11.
虽然钢混凝土连续组合梁桥在支座处负弯矩区混凝土桥面板处施加了预应力,但仍然存在桥面板拉应力过大导致混凝土开裂的问题。为解决这一难题,以山东省广饶县小清河特大桥2 号主桥为例,在对钢混凝土连续组合梁桥的设计难点及其相关技术措施进行评价的基础上,基于部分组合技术及桥面板混凝土分步浇筑技术,对钢混凝土连续组合梁桥的支座处负弯矩区的受力性能进行优化设计。基于Midas Civil 有限元模型,重点对该组合梁桥负弯矩区的抗裂性、支点反力及全桥刚度进行研究。研究结果表明:同时使用部分组合技术和桥面板混凝土分步浇筑技术,桥梁营运期内负弯矩区混凝土桥面板始终受压;仅采用部分组合技术或桥面板混凝土分步浇筑技术,桥梁营运期内负弯矩区混凝土桥面板受到拉应力作用,且拉应力较大。由此可知,综合使用部分组合技术和桥面板混凝土分步浇筑技术,可以有效降低钢混凝土连续组合梁桥负弯矩区混凝土桥面板的拉应力,防止混凝土桥面板开裂,改善桥梁耐久性。  相似文献   

12.
以某钢—混组合箱梁桥为例,依据新规范建立了该桥的有限元分析模型进行该桥的正常使用阶段进行静力验算分析,结果表明正常使用阶段钢箱梁的正应力、混凝土桥面板的压应力满足规范的要求,但在中墩区域及其附近、边跨梁端长预应力束锚固区域,混凝土桥面板可能会开裂,钢—混组合梁的计算挠度和验算结果满足规范要求。  相似文献   

13.
采用H型钢-超高韧性混凝土(STC)板的组合结构形式可有效改善传统正交异性钢桥面-超高韧性混凝土组合桥面结构中存在的结构疲劳开裂问题。为了研究不同结构参数对H型钢-STC组合桥面结构开裂性能的影响规律,基于ABAQUS以及扩展有限元方法(XFEM)建立了考虑裂纹扩展的组合梁有限元模型,对不同桥面板厚度、配筋率条件下开裂性能以及延性的变化规律开展了有限元模拟研究。研究结果表明,与采用普通混凝土(C50)相比,不同混凝土板厚度条件下,采用STC对开裂强度与延性的提升效果最大分别为175.0%与446.3%,而不同配筋率条件下的提升效果最大可达205.1%与1 330.3%。为H型钢-STC组合桥面结构在实际桥梁工程中的应用提供相应的技术支撑与建议。  相似文献   

14.
钢-混凝土双面组合连续梁负弯矩区上混凝土板受拉会产生裂缝。利用ANSYS有限元软件,考虑了混凝土的拉应变软化特性,对钢-混凝土双面组合2跨连续梁模型进行数值模拟分析,得到了上混凝土板裂缝分布和宽度。将计算结果与实测结果进行比较,验证了该模型的有效性。通过变换下混凝土板厚度和混凝土极限拉应变值,分析其对双面组合梁挠度和裂缝的影响;采用最小二乘法,对荷载-挠度;荷载-最大裂缝宽度曲线进行拟合,得出相应的计算公式。  相似文献   

15.
为研究波形钢腹板预应力混凝土连续梁桥的参数敏感性,以减河大桥为研究对象建立有限元模型,分析主梁质量、混凝土弹性模量、预应力损失及混凝土收缩徐变等参数对主梁结构的影响,从主梁顶板、底板应力变化及竖向挠度变化确定各参数对结构的影响程度,即参数敏感性.结果表明:主梁质量、预应力损失和混凝土收缩徐变对桥梁结构影响较大,混凝土弹...  相似文献   

16.
运宝黄河大桥副桥桥跨结构采用(48+9×90+48)m波型钢腹板预应力混凝土刚构-连续组合梁桥,结合运宝黄河大桥副桥介绍波形钢腹板刚构-连续组合梁桥的设计及分析。  相似文献   

17.
为检验某钢桁腹预应力混凝土组合梁桥的承载能力是否满足正常使用状况的要求,对该桥在静载作用下的挠度、应力进行试验分析.研究结果表明,该桥的受力性能和正常使用状态极限承栽力均满足设计要求,结构工作状况良好.  相似文献   

18.
对高速铁路中广泛应用的预应力混凝土简支箱梁进行了多级重复荷载下的模型试验.试验的主要测试结果包括2种加载方式下梁的裂缝宽度和裂缝分布展开情况,荷载-挠度曲线和弯矩-转角曲线,混凝土和普通钢筋的应变分布等.研究结果表明:混凝土首先在跨中底板出现裂缝,然后慢慢向腹板扩展.在纯弯段,裂缝间距分布比较均匀.在施加荷载超过开裂荷载不多的情况下卸载,裂缝在预应力筋的作用下能够闭合.箱梁的最终破坏现象是混凝土顶板的压溃爆裂,跨中极限位移为跨径的1/55.重复加载下的荷载位移曲线的包络线有3个拐点,分别对应于混凝土开裂,钢筋屈服,预应力筋屈服;而重复荷载下的弯矩转角曲线在整个过程中有一个拐点,对应于预应力筋的屈服.  相似文献   

19.
为研究提高钢-混凝土组合连续弯箱梁抗火性能的策略,选取某三跨钢-混凝土组合连续弯箱梁为研究对象,利用通用有限元软件ANSYS建立了其在火灾下的三维非线性两阶段分析模型;基于已有热-结构耦合分析方法,模型考虑了钢箱梁内空腔辐射传热过程和其上翼缘与混凝土板的接触边界条件;将模型得到的预测结果与试验数据进行了比较,验证了模型的可靠性;采用建立的模型在不同纵向受火位置、火灾强度和荷载水平作用下对钢-混凝土组合连续弯箱梁跨中挠度进行了参数敏感性分析,研究了其极限承载能力和刚度衰变规律;以火灾下跨中挠度为评估指标,提出了针对钢-混凝土组合连续弯箱梁的抗火设计方法。研究结果表明:在对称火和结构荷载作用下,钢-混凝土组合连续弯箱梁外边缘挠度大于内边缘挠度,且荷载越大,火灾越严重,这一效应越显著;在油罐车等过火面积较大的火灾作用下,刚度较极限承载能力衰退更快,与常温下的钢-混凝土组合连续弯箱梁极限承载能力和刚度相比,边跨受火16 min时极限承载能力和刚度分别降低至29%和14%,中跨受火28 min时极限承载能力和刚度分别降低至31%和22%;在钢-混凝土组合连续弯箱梁抗火设计中,应首先提高外侧钢箱梁在火灾下的刚度,增多和加宽外侧钢箱梁底板纵向加劲肋可使边跨受火20 min后内外侧钢箱梁跨中挠度差分别减小23%和30%,中跨受火32 min后内外侧钢箱梁跨中挠度差分别减小22%和27%。   相似文献   

20.
为了提高普通钢筋混凝土梁的耐久性,设计了一种超高性能混凝土(UHPC)-高性能混凝土(HPC)组合梁新型结构,开展了锈蚀后UHPC-HPC组合梁的抗弯性能试验,研究了氯盐侵蚀后组合梁抗弯承载力降低的机理,分析了腐蚀程度、截面形式与预损伤对其抗弯性能的影响;引入钢筋屈服强度折减系数、截面积折减系数与混凝土预损伤系数,提出了锈蚀后UHPC-HPC组合梁抗弯承载力计算方法,并验证了计算方法的可行性。分析结果表明:锈蚀后梁体抗弯承载力降低主要原因为钢筋抗拉强度下降,梁体刚度退化与韧性减弱,钢纤维阻裂效果削弱;锈蚀后UHPC-HPC组合梁的破坏表现为跨中附近出现1条主裂缝或加载点附近出现2条主裂缝;UHPC-HPC组合梁的受力过程分为线弹性、裂缝发展和屈服3个阶段,梁体截面混凝土应变基本符合平截面假定;侵蚀时间越长,组合梁的开裂荷载和承载力降低越大,通电快速侵蚀10 d时,降幅分别达16.2%和10.9%;锈蚀后T形梁比矩形梁开裂早,前者的开裂荷载比后者降低8.1%,后期刚度下降较快;预损伤显著影响梁的整体刚度,预加载后梁的整体刚度降低,混凝土损伤后的预损伤系数为0.984;锈蚀率越大,钢筋的屈...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号