首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Path travel time estimation for buses is critical to public transit operation and passenger information system. State-of-the-art methods for estimating path travel time are usually focused on single vehicle with a limited number of road segments, thereby neglecting the interaction among multiple buses, boarding behavior, and traffic flow. This study models path travel time for buses considering link travel time and station dwell time. First, we fit link travel time to shifted lognormal distributions as in previous studies. Then, we propose a probabilistic model to capture interactions among buses in the bus bay as a first-in-first-out queue, with every bus sharing the same set of behaviors: queuing to enter the bus bay, loading/unloading passengers, and merging into traffic flow on the main road. Finally, path travel time distribution is estimated by statistically summarizing link travel time distributions and station dwell time distributions. The path travel time of a bus line in Hangzhou is analyzed to validate the effectiveness of the proposed model. Results show that the model-based estimated path travel time distribution resembles the observed distribution well. Based on the calculation of path travel time, link travel time reliability is identified as the main factor affecting path travel time reliability.  相似文献   

2.
The estimation of urban arterial travel time distribution (TTD) is critical to help implement Intelligent Transportation Systems (ITS) and provide travelers with timely and reliable route guidance. The state-of-practice procedure for arterial TTD estimation commonly assumes that the path travel time follows a certain distribution without considering link correlations. However, this approach appears inappropriate since travel times on successive links are essentially dependent along signalized arterials. In this study, a copula-based approach is proposed to model arterial TTD by accounting for spatial link correlations. First, TTDs on consecutive links along one arterial in Hangzhou, China are investigated. Link TTDs are estimated through the nonparametric kernel smoothing method. Link correlations are analyzed in both unfavorable and favorable coordination cases. Then, Gaussian copula models are introduced to model the dependent structure between link TTDs. The parameters of Gaussian copula are obtained by Maximum-Likelihood Estimation (MLE). Next, path TTDs covering consecutive links are estimated based on the estimated copula models. The results demonstrate the advantage of the proposed copula-based approach, compared with the convolution without capturing link correlations and the empirical distribution fitting methods in both unfavorable and favorable coordination cases.  相似文献   

3.
The present study analyzes the stochastic nature of travel time distribution under the uncertainty of traffic volume and the proportion of cars in the traffic stream. Stochastic response surface method (SRSM) is adopted for modeling the travel time variation under the influence of traffic composition and traffic volume. This model is applied to an uninterrupted urban arterial corridor of 1.7 km length in New Delhi. Video graphic data were collected for 2 days during morning hours between 8 AM and 12 noon and evening hours of 3–7 PM. License plate matching technique was used for measuring the travel time in the study area. This study focused on travel time variation of cars with varying traffic volume and proportion of car in the traffic stream. Linear regression analysis was carried out initially to know the functional relation and significance relation between the input and output variables, and then SRSM analysis was performed. Artificial neural network (ANN) is also considered to map the relation among travel time, traffic volume and composition of traffic stream. A comparative evaluation is made among ANN, SRSM and regression analysis. Results indicate that apart from traffic volume, the influence of car population is more on travel time variation than motorized two-wheelers. It is attributed to the smaller size and comparability better operating condition of motorized two-wheelers. Also, the ANN and SRSM models are more efficient for analyzing the stochastic relation between the response and uncertain explanatory variable than the regression model.  相似文献   

4.
Arterial travel time information is crucial to advanced traffic management systems and advanced traveler information systems. An effective way to represent this information is the estimation of travel time distribution. In this paper, we develop a modified Gaussian mixture model in order to estimate link travel time distributions along arterial with signalized intersections. The proposed model is applicable to traffic data from either fixed-location sensors or mobile sensors. The model performance is validated using real-world traffic data (more than 1,400 vehicles) collected by the wireless magnetic sensors and digital image recognition in the field. The proposed model shows high potential (i.e., the correction rate are above 0.9) to satisfactorily estimate travel time statistics and classify vehicle stop versus non-stop movements. In addition, the resultant movement classification application can significantly improve the estimation of traffic-related energy and emissions along arterial.  相似文献   

5.
综合考虑到浮动车检测技术与感应线圈检测技术的优缺点,为了提高道路行程时间估计的精度及完备性,提出基于浮动车与感应线圈的融合检测技术的行程时间估计模型。该模型利用神经网络技术对两种检测技术同一路段的检测数据进行融合,从而达到提高道路行程时间估计精度和完备性的目的。最后,以广州市7 000多辆装有GPS装置的出租车所提供的浮动车数据、100多个安装在广州市各主要道路口上的感应线圈检测器提供的感应线圈数据以及广州市交通电子地图为基础,在10条道路上分别随机选取的500个两种检测数据对提出的模型进行了验证,试验结果表明,此模型在道路行程时间估计的精度方面较浮动车移动检测技术与感应线圈技术有较大提高。  相似文献   

6.
    
Recent studies have confirmed that travelers consider travel time reliability in addition to average travel time when making route choice decisions. In this study, we develop a bi-objective routing model that seeks to simultaneously optimize the average travel time and travel time reliability. The semi-standard deviation (SSD) is chosen as the reliability measure because it reflects travelers' concerns over longer travel time better than the commonly used standard deviation. The Pareto-optimal solutions to the bi-objective model are found by using an improved strength Pareto evolutionary algorithm. Tests on a real-world urban network with field measured travel time data have demonstrated good performance of the algorithm in the aspects, such as computational efficiency, quick convergence, and closeness to the global Pareto-optimal. Overall, the bi-objective routing model generates reasonable path recommendations. The SSD-based model is sensitive to the asymmetry of travel time distribution and tends to avoid paths with excessively long delays. This would be particularly helpful to those users placing high values on travel time reliability.  相似文献   

7.
以嵌入式技术为基础,采用单片机及串口通信技术,开发基于蓝牙的路网平均行程时间检测器,实现自动采集车载蓝牙M AC地址并配时和数据存储的功能。通过场地测试确定了设备漏检率的平均大小、与速度的关系及初次检测点位置的分布规律。测定了设备的检测精度,并对平均速度、检测数、配对数等因素进行了分析;通过 t检验、曼惠特尼U检验及沃尔德沃尔福威茨(W-W )检验验证了设备数据的可靠性;通过实地测试验证了设备的可用性和实用性,并根据测试结果,提出了设备存在的一些不足以及后期改进的建议,为蓝牙检测器的后续研发奠定了基础。  相似文献   

8.
为了定量化测度行程时间可变性右偏且长尾的实证特征,考虑实际观测中可能存在的数据样本量不足和离群值干扰问题,提出基于线性矩的L-偏度和L-峰度用于精确表征行程时间可变性。考虑到线性矩是顺序统计量期望的线性组合,给出了避免遍历所有子样本的线性矩估计方法。根据线性矩概念,探究了L-偏度和L-峰度的数学含义和其表征行程时间可变性的有效性,以及样本L-偏度和L-峰度的计算方法。理论研究发现,在表征范围和样本估计质量方面,相较于传统偏度和峰度,L-偏度和L-峰度对行程时间可变性具有更加优越的表征能力。采用深圳市车牌照识别系统的行程时间数据集进行案例分析,从无偏性、鲁棒性和有效性3个维度证明了L-偏度和L-峰度相较于传统偏度和峰度的优越性。分析结果如下:样本L-偏度和L-峰度在样本量不足时仍然是总体近似的无偏估计,而传统偏度和峰度的系统性误差较大;L-偏度和L-峰度对离群值具有鲁棒性,而传统偏度和峰度对离群值过于敏感;样本L-偏度和L-峰度对总体的估计波动小且精度高,具有良好的估计有效性;L-偏度和L-峰度分别与传统偏度和峰度有较高相关性,但又能够辨识出不同时空下行程时间可变性分布的差异。基于L-偏...  相似文献   

9.
根据城市快速路交通诱导和监控系统的实际需要,提出了基于宏观动态流体力学模型的行程时间预测技术,可以动态预测稳定流和非稳定流状况下城市快速路网上任意两点间行程时间.  相似文献   

10.
利用探测车数据进行路段行程时间估计面临着两类误差:采样误差和非采样误差,从而导致估计结果精度不高和可靠性差。在回顾已有估计方法的基础上,有针对性地引入了自适应式卡尔曼滤波,建立了相应的状态方程和观测方程,利用相似时间特征的历史数据标定了状态转移系数,并对滤波进行了求解。以实际数据对估计方法进行了验证,平均相对误差为13.13%。研究表明,自适应式卡尔曼滤波能够应用到基于探测车数据的路段行程时间估计中来,并具有估计精度高、收敛速度快、参数少、对初值不敏感等优点。  相似文献   

11.
与传统的固定式采集系统(感应线圈等)比较,探测车系统具有直接采集行程时间、时空覆盖范围广等优点.研究少量探测车情况下的路段行程时间估计问题对降低探测车系统的运营费用具有重要意义.在发现停车组和非停车组的行程时间均值、非停车组所占百分比等3个参数之间关联关系的基础上,提出了在极小样本情况下估计城市路段平均行程时间的方法.基于微观交通仿真的比较分析显示,该方法优于通过样本均值估计平均路段行程时间的方法,特别是当交通状况处于拥挤情况下其优势更为明显.  相似文献   

12.
为描述非均衡网络交通流实际成本-流量状态,考虑置存成本和路段行程时间,建立行程时间动态函数,将其引入用户均衡模型,构建基于出行总成本动态、路径流量动态、路段行程时间动态的交通流演化模型。利用简单网络,采用四阶龙格库塔方法对建立的模型进行数值模拟。动态模型弹性需求下,出行成本调整范围由大到小,趋于平衡值;路径流量迅速增加后,以较小调整范围,趋于平衡值;路段行程时间迅速增加后,逐步趋向于平衡值。固定需求下的出行成本、路径流量、路段行程时间均是反复调整多次后趋近于平衡值,调整范围缩小,次数增加。算例模拟结果表明,模型能够描述网络交通流从一种非均衡状态到另一种非均衡状态的动态调整过程。  相似文献   

13.
    
Providing reliable travel time prediction is very much needed for commuters for their upcoming trips to reduce travel time and relieve traffic congestion. This article proposes an integrated model for path and multi-step-ahead travel time prediction on freeways using both historical and real-time heterogeneous traffic and weather data. The model's performance is investigated in a case study under various traffic scenarios. Results indicate that the proposed model provides satisfactory prediction results in various performance tests. For practical purposes, general guidelines for selecting the model's parameter sets as well as the efficient size of historical data are also presented.  相似文献   

14.
出行方式选择行为的个体时间感知差异性建模分析   总被引:2,自引:2,他引:0  
采用系统捕捉和随机捕捉两类捕捉形式对出行方式的时间感知差异进行建模分析,以验证出行方式选择中时间认识的个体差异性,为更准确的交通方式划分预测提供模型参考。系统捕捉通过在Logit模型中分别设置性别、收入与出行时间的交叉变量以捕捉性别和收入不同导致时间价值认识的差异;随机捕捉通过假定出行时间参数分别服从正态分布、均匀分布、对数正态分布以及约翰逊分布4种随机分布形式,利用Mixed Logit模型捕捉出行者对时间感知的差异。结果表明:出行方式选择中出行者对时间重要性认识存在差异,男性比女性对时间要求高,高收入者比低收入者对时间估值更高;随机捕捉较系统捕捉更能捕捉到出行时间的感知差异,且约翰逊分布较其他分布对时间感知差异性的模拟更优。  相似文献   

15.
    
Urban arterial performance evaluation has been broadly studied, with the major focus on average travel time estimation. However, in view of the stochastic nature of interrupted flow, the ability to capture the characteristics of travel time variability has become a critical step in determining arterial level of service (LOS). This article first presents a stochastic approach that integrates classic cumulative curves and probability theories in order to investigate delay variability at signalized intersections, as a dominant part of the link travel time variability. This serves as a basis for arterial travel time estimation, which can be obtained through a convolution of individual link travel time distributions. The proposed approach is then applied in the estimation of travel time along one arterial in Shanghai, China, with abundant automatic vehicle identification (AVI) data sources. The travel time variability is evaluated thoroughly at 30-min intervals, with promising results achieved in comparison to the field measurements. In addition, the estimated travel time distributions are utilized to illustrate the probability of multiple LOS ranges, namely, reliability LOS. The results provide insights into how we might achieve a more reliable and informative understanding of arterial performance.  相似文献   

16.
利用倒传递类神经网路,单以资料本身进行路段旅行时间预测,避免建立高复杂度的模式以及环境所产生的干扰下,建立不失精准度的预测模式。研究过程中发现:若仅考量路段中的车辆侦测器资料用以预测旅行时间,其预测精准度较劣於融合车辆侦测器资料及公车旅行时间资料之精准度,且发现预测精准度於尖峰时段较准确,故可推论使用一种以上的多元探测器所得之交通参数资料且於车流量较大之路段皆可提高路段旅行时间预测之精准度。  相似文献   

17.
基于粗糙集交通信息提取计算的城市道路行程时间预测   总被引:1,自引:0,他引:1  
针对城市道路的行程时间预测问题进行研究。由于城市道路交通问题具有不确定性和不精确性,故采用基于粗糙集的交通信息提取计算理论建立城市道路行程时间预测模型。模型建立后,利用在荷兰代尔夫特市采集到的实际数据,对该预测模型进行检验。检验结果表明:如果不进行原始数据的前期处理,那么得到的预测误差在35%左右;而在剔除了质量较差的数据后,预测精度明显提高;同时,条件属性和决策属性的分类,显著影响到预测的精度。通过计算得到分类范围值,该模型能够较好的对交通状态进行物理解释同时预测精度能够达到可以接受的范围。  相似文献   

18.
针对小样本条件下拟合交通流调查数据的统计分布的困难,基于概率加权矩与最大熵原理建立了统计分布函数估计的新方法及其实用的数值计算方法。传统上基于经典矩的最大熵原理是重要的拟合交通流统计分布的方法,然而实际交通研究中的小样本量导致高阶经典矩不能稳健估计参数。将概率加权矩引入统计分布建模建立的新方法克服了基于经典矩在小样本量下统计估计的大偏差问题。新方法直接从样本信息出发,不需要对待估随机变量的统计分布函数作任何先验假定,从为建立统计分布函数提供了便利。理论例题仿真与实例计算验证表明,大样本下新方法计算精度高于经典方法,在小样本量下(<30)新方法明显优于经典方法。  相似文献   

19.
立足于历史和实时数据的融合应用,从实际应用角度出发,构筑了一种路径短时行程时间的组合预测模型和相应算法。该组合预测模型包含基于历史数据特征向量的聚类分析子模型和基于路径行程时间序列的自回归子模型,通过贝叶斯概率公式实现子模型的权重分配。并对数据进行滚动式处理,实现权重系数的实时更新。最后选择上海市快速路系统3条典型路径进行实例分析,并与实际牌照自动识别行程时间数据进行对比验证。  相似文献   

20.
城市干道旅行时间预测是实时交通运营管理与交通诱导的核心问题之一,也是出行者的重要需求.文中分析了济南市经十路采集的真实数据,研究发现了交通需求和旅行时间在工作日和非工作日同时段具有较大差异、全天具有显著早晚高峰、以及工作日同时段具有相似性及波动性等特征.基于该类特性,分别改进了适用于周期性数据的卡尔曼滤波和波动性的人工神经网络2类预测模型.提出了组合预测算法,将基于历史同时段数据的卡尔曼滤波算法的预测值作为人工神经网络的输入变量,利用历史天和临近时刻的可用数据进行了预测.结果表明:在3.8 km的信号控制干道上,组合预测模型平均误差低于0.9 min,误差超过2 min的概率低于4%,其预测性能可满足实时的交通需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号