首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以新疆小沙河中桥为背景,通过试验实测与有限元分析,研究西北极寒地区混凝土箱梁温度场分布特点及其温度效应。选取2016年1月20日至2016年2月20日实测温度数据作为研究对象,分析结果表明:受太阳辐射的影响,梁高方向存在明显的温度梯度,测点T1,T4最大温差达到6.4℃,测点T4,T6最大温差达到5.6℃;腹板壁厚方向存在明显的温度梯度,测点T3,T5之间最大温差达到5.6℃;底板沿壁厚方向存在明显的温度梯度,测点T7,T8之间最大温差达到8℃。基于传热学分析理论,建立混凝土箱梁温度场有限元模型,选取2016年1月27日06:00到2016年1月28日06:00的实测温度数据,验证了混凝土箱梁温度场有限元模型的准确性。在验证有限元模型准确性基础上,计算日照升温和寒潮降温作用下混凝土箱梁梁高、腹板以及底板壁厚方向的温度场分布,计算分析最不利时刻温度场作用下的混凝土箱梁的温度效应,并与现有规范进行对比。研究结果表明:西北极寒地区带沥青铺装的混凝土箱梁竖向温度梯度与规范有所差别,箱梁顶板温差较小,而底板温差较大;日照下腹板温度高于顶板,降温时顶板温度高于腹板;温度效应计算较规范更为不利,降温时在底板产生的拉应力可能使混凝土产生开裂;在进行西北地区混凝土箱梁的设计计算时,建议根据桥位处气象数据对温度效应进行分析。  相似文献   

2.
为研究大跨径预应力混凝土连续梁桥在实际服役环境下顶板、腹板和底板随时间变化的温度分布状况,通过埋设传感器,对依托工程桥梁在日照作用下的温度场分布做了试验研究,结果表明:在高温、风速较小的天气情况下,箱梁混凝土温度变化不同步,从外到内依次延后,温度达到极值的时间依次滞后;混凝土的内部温度变化情况最小,箱梁底板和顶板位置会出现竖向温差,腹板位置会出现横向温差,并且竖向温差也会出现在沿腹板的竖向位置。  相似文献   

3.
为研究波形钢腹板PC连续梁桥在异步悬臂施工不同工序下的受力性能及施工工期,以主桥长360m的奉化江大桥为背景,采用有限元软件建立该桥箱梁的1~4号节段模型,分析按不同顺序浇筑箱梁顶、底板混凝土,吊装波形钢腹板时箱梁结构受力,并比较所需工期。结果表明:异步悬臂施工时,PC梁箱室中间小部分顶板混凝土处于受拉状态;波形钢腹板位移变化较大。若仅考虑结构受力,先浇筑前一节段顶板,再浇筑本节段底板,最后吊装后一节段波形钢腹板的方案施工期间挠度最小,受力最优;若综合考虑结构受力性能和施工周期的影响,同时浇筑前一节段顶板和本节段底板,最后吊装后一节段波形钢腹板的施工工序最优。  相似文献   

4.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

5.
王新联  徐爱敏 《公路》2022,(8):206-211
早期水化热是导致大吨位箱梁混凝土早期开裂的主要原因之一。以杭甬复线宁波段一期工程的40 m预制箱梁为背景,开展早期水化热试验研究。研究结果表明,40 m箱梁早期水化热温度变化总体呈“温升—高温持续—降温”的变化规律;水化热最高温度出现在端部截面右侧腹板芯部,最高温度为77.0℃,出现时间为混凝土开始浇筑后第30 h;混凝土最大温差出现在箱梁端部截面右侧腹板芯部—腹板内表层,最大温差为21.5℃,出现时间为混凝土开始浇筑后第35 h;由于箱梁端部腹板较厚,混凝土芯部热量相对不易散失,导致端部混凝土升温速率大于跨中截面;同时,外界环境对大吨位箱梁水化热温度峰值、升降温速率、内表温差有重要影响。试验结果可为大吨位箱梁施工养护和裂缝防控提供参考。  相似文献   

6.
为探明大跨度混凝土箱梁桥施工及成桥阶段的温度场及温度效应,以某实际箱梁桥为研究对象,基于现场监测的温度数据,拟合得到日照作用下混凝土箱梁的竖向温度梯度模式,并在此基础上,建立桥梁各阶段的温度效应结构计算模型,重点研究了箱梁桥在现场监测及各国规范规定的温度梯度模式下的温度应力及竖向挠度分布规律,分析了现场监测得到的最不利竖向温差模式下混凝土箱梁截面的横向及竖向温度应力分布规律。研究结果表明:1)中国《铁路桥涵混凝土结构设计规范》(TB 10092—2017)规定的温度梯度模式的计算结果与依托工程桥梁现场监测结果一致性最好,英国桥梁规范接近;2)混凝土箱梁的顶板和底板主要承受横向温度应力,腹板主要承受竖向温度应力。  相似文献   

7.
为控制某桥桥墩上现浇0、1号块箱梁的内外温差,消除巨大温差引起的裂缝等结构安全隐患,以实际桥梁工程为背景,采用有限元软件对浇筑后的箱梁0、1号块瞬态温度场进行仿真分析,并在现场埋设温度传感器监测其温度场.结果表明:相对于顶板、腹板和底板,横隔板温度更高且最晚达到最大值(45℃);采用分层浇筑、埋设冷却水管等施工控制措施,各部件温度明显降低,结构内、外温差可以较好地控制在20℃以内,且拆模后未发现裂缝.  相似文献   

8.
为研究混凝土箱梁在日照环境下的温度场和温度应力分布规律,以沪昆客专沅江大桥——(88+168+88+40)m刚构连续梁为背景,采用有限元法建立该桥混凝土箱梁的二维温度场模型和三维温度应力分析模型,得出箱梁温度场和温度应力分布的理论值,并与现场实测值进行对比。结果表明:箱梁温度呈对称分布;箱梁顶板外表面温度比箱梁体内部高,呈三角函数形式变化,箱梁内部达最高温度的时刻较箱梁外部滞后约2h,大致呈直线变化;腹板与底板的温度时程曲线近似为直线,温度变化平缓,腹板温度较底板温度高,东腹板与西腹板之间的温度相差不大;温度的理论计算值与实测值吻合较好;在最不利温度作用下,混凝土箱梁的温度应力基本关于桥轴线对称分布,温度应力理论相对值与实桥观测值略有差异,计算值基本上能反映实际工程情况。  相似文献   

9.
混凝土箱梁横、竖向温度应力分析   总被引:1,自引:0,他引:1  
该文通过弹性力学中平面应力问题的求解方法得出各种温度模式下混凝土箱梁横向、竖向温度自应力公式;按求解框架约束温差应力的方法得到混凝土箱梁横向、竖向温度约束应力公式,并对影响其大小的因素箱梁高度、宽度,顶板、底板、腹板厚度作了分析;得到顶板横向、腹板竖向温度应力最不利温度模式组合方式。  相似文献   

10.
丁祥文 《上海公路》2023,(3):103-106+219
为研究隧道底板一次浇筑施工过程中,结构的温度场和应力场的变化规律及结构抗裂性能,以深圳某隧道长40 m×宽16.25 m×厚1.2 m的底板为工程背景,进行分析。采用ANSYS,建立实体水化热效应温度场和应力有限元模型,并利用matlab处理温度荷载数据,结合实际浇筑方案和拆模时间,研究底板从浇筑至28 d的内部最高温度、最低温度、里表温差和拉应力变化规律。结果表明:混凝土底板在2~3 d内达到温度峰值,最高温度为52.54℃。在第28 d,混凝土里表温度基本与环境温度接近。里表温差最大为21.4℃,发生在2~3 d的时间段内。实际施工时,可采取一定的保湿通风和提高掺合料比等措施,来控制温度峰值。整个施工过程中,混凝土抗裂安全系数均大于1.15,满足规范要求。底板采取一次浇筑的施工方案切实可行。  相似文献   

11.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

12.
波形钢腹板预应力混凝土箱梁足尺模型试验研究   总被引:1,自引:0,他引:1  
根据国内首座波形钢腹板预应力混凝土组合箱梁公路桥———泼河大桥的箱梁构造尺寸,设计了足尺模型试验梁,对其力学性能进行了试验研究。测试了波形钢腹板及顶板的混凝土纵向应变分布、挠度以及腹板剪力、体外预应力增量等问题。研究结果表明:波形钢腹板预应力混凝土组合箱梁的混凝土顶板和底板主要承担弯矩,波形钢腹板则主要承担剪力,箱梁的计算挠度应考虑钢腹板剪切变形的影响,混凝土顶板存在明显的剪力滞效应,同时得出在荷载作用下体外预应力增量呈线性变化规律,且应力增量很小。  相似文献   

13.
在对水府庙混凝土箱梁桥温度场的实测和分析基础上,进行设计参数的研究,包括箱梁翼缘悬臂长度、腹板高度和桥梁轴线方位角对温度场和温度应力的影响,得到最大横向温差与(腹板高度/翼缘悬臂长度)的曲线图.  相似文献   

14.
T型梁桥腹板竖向裂缝是该类桥梁的典型病害,温度效应是引起裂缝产生的重要因素之一。为研究不同工况下T型梁桥的温度效应,选取梁体浇筑水化热、桥面沥青摊铺、日照温差3种工况,采用ADINA有限元软件进行实体模拟分析。结果表明:考虑混凝土时变效应时,T梁浇筑过程中水化热效应对结构影响较小; T型梁桥桥面沥青摊铺过程对T梁结构影响较大,T梁腹板由于沥青摊铺过程产生的温度梯度而产生较大的拉应力,约4h时温度应力达到峰值,可达3. 8MPa,其量值不可忽视,应在设计验算过程中予以考虑;在日照正温差作用下,T梁腹板将产生较大拉应力,对腹板受力产生不利影响。  相似文献   

15.
混凝土水化热是单箱多室混凝土箱梁产生早期裂缝的主要因素之一,而目前对于单箱多室混凝土箱梁水化热研究较少。以佛山市奇龙大桥边跨单箱多室混凝土箱梁作为研究对象,通过各重要部位布置的测点对浇筑后的水化热温度场进行了长达14 d的连续测试,明确了箱梁不同部位水化热的发展规律。基于ANSYS有限元软件对该混凝土箱梁温度场进行了仿真分析,分析结果与实测值吻合;基于混凝土材料的力学性能的发展规律,对水化热温度场所致的结构应力场进行了分析,得到了混凝土箱梁各控制点的应力时程曲线及箱梁腹板内外温差的控制限制。结果表明:对于所研究的混凝土箱梁而言,外腹板的主拉应力最大,其值为2.14 MPa,小于对应时刻的抗拉强度值2.53 MPa,但应力长时间处于较高的水平,因此腹板内外温差应控制在30℃以内。根据实测与分析结果,提出了单箱多室箱梁开裂控制的混凝土配合比设计及养护建议。  相似文献   

16.
陈金义  李扬  廖伟华  杨高飞 《公路》2023,(1):106-110
针对某大跨径预应力混凝土连续刚构箱梁早龄期腹板裂缝问题,对裂缝进行了现场详细的调查统计,建立了混凝土箱梁开裂节段水化热分析模型。分析结果表明,混凝土早龄期水化热产生的温度场未完全稳定,主拉应力呈现先快速增长后缓慢衰减的趋势;在早龄期张拉纵向预应力钢束后,在温度与预应力作用耦合下,混凝土箱梁腹板中产生了较大的主拉应力,从而导致腹板开裂。本研究结果可为研究大跨径连续刚构箱梁水化热效应和确定腹板钢束张拉时机提供参考。  相似文献   

17.
基于某13跨波形钢腹板连续梁桥,采用实际监测法和有限元数值模拟法,研究了波形钢腹板组合箱梁桥悬臂浇筑施工过程中温度效应和应力状态两个关键力学问题。研究结果表明,波形钢腹板组合箱梁桥悬臂施工过程中,大气温度变化可以引起梁体产生不可忽略的位移。施工过程中混凝土顶、底板由于剪力滞效应影响,纵向正应力呈现不均匀分布,而腹板剪应力分布均匀,且基本不受预应力施加的影响。  相似文献   

18.
《公路》2017,(4)
波形钢腹板箱梁由于腹板的皱褶效应,顶、底板与腹板不服从平截面假定。为此,顶板、底板采用空间体单元,腹板采用空间壳单元模拟,精确模拟腹板与顶板、底板的连接。考虑施工过程定义,考虑横向预应力和纵向预应力的影响,考虑施工期挂篮对波形钢腹板箱梁底板的作用,开展了从零号块至最大悬臂状态的波形钢腹板施工过程分析。分析结果显示,空间精细化模型的位移计算结果与一般梁单元采用增量有限元算法得到的规律类似。原始挂篮底模后吊点处会出现应力集中现象。通过改变挂篮后吊点施工方案,可降低应力集中导致的混凝土开裂风险。同时提出了在箱梁纵向一些底板开裂风险较大部位增设防裂网片,抑制施工期波形钢腹板底板裂缝扩展。  相似文献   

19.
全比例波形钢腹板PC箱梁力学特性试验研究   总被引:4,自引:0,他引:4  
根据国内第一座波形钢腹板PC组合箱梁公路桥-泼河大桥的箱梁构造尺寸,设计了30 m足尺试验梁,对其力学性能进行了试验研究和有限元分析。测试了箱梁挠度,波形钢腹板、混凝土顶板及底板的应变。研究结果表明,波形钢腹板PC组合箱梁的混凝土顶板和底板主要承担弯矩,波形钢腹板则主要承担剪力。试验结果为实桥的设计和建造提供了重要的资料。  相似文献   

20.
为了解波形钢腹板多室箱梁部分斜拉桥剪力滞效应对结构受力的影响,以某(58+118+188+108) m单箱四室波形钢腹板部分斜拉桥为背景,采用有限元法建立空间有限元模型,在跨中偏载和对称荷载作用下,计算主跨箱梁有索段和无索段顶底板混凝土正应力,分析各截面的剪力滞分布规律。结果表明:箱梁跨中截面混凝土顶板、底板正应力分布极不均匀,具有明显的剪力滞效应,箱梁混凝土顶板、底板剪力滞系数随距集中荷载作用点距离的增大急剧减小,截面顶板剪力滞效应均比底板大;箱梁顶底板均呈现正剪力滞效应,混凝土横隔板可以改善箱梁截面正应力分布,减弱剪力滞效应;顶底板剪力滞系数在无索段范围内急剧减小,有索段内急剧增大,车辆活载只在局部范围内引起较大的剪力滞效应,设计中应考虑此效应引起的不均匀应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号