首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
广州明珠湾大桥主桥为(96+164+436+164+96+60) m中承式钢桁拱桥,采用双层桥面布置,主梁采用N形三主桁钢桁梁结构。主桥采用斜拉扣挂法、拱梁同步架设;中跨合龙时,拱肋与主梁分别采用"多点同步合龙"与"节点拼装合龙"法进行先拱后梁施工,以提高大桥的合龙效率。通过敏感性分析确定该桥采用26号、29号墩顶、落梁为主,竖向、横向、纵向顶拉为辅的合龙措施调整拱肋合龙口空间姿态。该桥中跨合龙施工中,在边跨采用抗倾覆压重设计,以控制大桥悬臂施工阶段由自重产生的倾覆力矩;在26号、29号墩顶支座处布置顶、落梁及纵移装置,以消除合龙口高差与转角位移,实现精准对位;在拱肋与主梁合龙口设置微调装置,以实现钢梁合龙口间距微调;在27号主墩设置顶推装置,使结构整体纵移0.085 m,实现上、下拱肋同步合龙;主梁合龙节点杆件拼装后,利用吊杆与顶拉装置调节高差与合龙口间距,实现大桥无应力精确合龙。  相似文献   

2.
新建商合杭铁路芜湖长江公铁大桥主桥为(99.3+238+588+224+85.3)m的钢箱板桁结合梁斜拉桥,主梁上层为板桁结合,下层为钢箱结合钢桁梁。该桥钢梁划分为89个铁路面梁段单元和94个公路面梁段单元,采用分段吊装施工,钢梁架设采用"浮吊辅助架设墩顶节段+桥面架梁吊机悬臂架设"的总体方案,设中跨合龙口。首先利用浮吊起吊,采用支架法架设2号和3号桥塔墩墩顶的3个钢梁节段,然后在公路桥面上各安装2台桥面架梁吊机进行双悬臂架设,悬臂架设至辅助墩前方时,利用浮吊起吊安装辅助墩墩顶钢梁节段;当悬臂架设至边墩前方时,采用"浮吊+支架"辅助桥面架梁吊机悬臂架设边墩墩顶钢梁节段;最后利用2号墩侧架梁吊机提升中跨合龙段进行中跨合龙。  相似文献   

3.
铜陵公铁两用长江大桥主桥为630m五跨连续钢桁梁斜拉桥,采用三主桁三索面结构型式。3片主桁均由全焊桁片拼装而成。通过对备选方案的研究和比选,铜陵岸钢梁架设采用"边跨全顶推法架设+中跨悬臂法架设"方案,无为岸钢梁架设采用"边跨部分拖拉法架设+中跨悬臂法架设"方案,中跨合龙采用"桁片整体合龙"方案。在4号桥塔墩设置顶推平台和顶推装置,将铜陵岸边跨和次边跨钢梁分段安装、分次顶推至全部就位,然后将中跨钢梁悬臂架设至合龙口;在2号墩前方设置安装平台、1号墩墩顶布置拖拉装置,将无为岸边跨和部分次边跨钢梁分段安装、分次拖拉至全部就位,然后将3号墩前后两侧钢梁双悬臂架设至边跨合龙,再将剩余中跨钢梁单悬臂架设至跨中合龙口;最后吊装合龙段桁片进行中跨合龙。  相似文献   

4.
南京大胜关长江大桥主桥7号墩钢梁架设技术   总被引:1,自引:0,他引:1  
京沪高速铁路南京大胜关长江大桥主桥六跨连续钢桁拱采用从两侧往跨中架设、跨中合龙的总体施工方案。7号墩为六跨连续钢桁拱的中主墩,根据其结构特点制定总体架设方案,采用墩旁托架与钢梁固结、3层水平索辅助架设及2台70 t变坡爬行架梁吊机双悬臂架设的新方法,通过调整水平索力将3片主桁空间结构的18个合龙杆件位移同时调整到位。采用该方案顺利完成7号墩钢桁拱梁的双悬臂架设施工,实现2个主跨的无应力、零误差合龙,降低了架设风险,节约了大量的临时结构和设备费用。  相似文献   

5.
新建京港澳高铁安九段鳊鱼洲长江大桥南汊航道桥为主跨672 m双塔双索面钢-混混合梁交叉索斜拉桥,主跨及辅助跨主梁采用钢箱梁,标准节段长18 m,重约510 t,锚跨主梁采用预应力混凝土箱梁,重约200 t/m。根据该桥结构特点及水文地质条件,主梁采用现浇支架+多点顶推+单悬臂+双悬臂等混合方案施工。锚跨预应力混凝土箱梁采用“钻孔桩+钢管立柱+贝雷梁(大桥Ⅰ号桁梁)”支架现浇方案施工。九江侧钢梁采用单悬臂+多点顶推施工技术,边跨钢梁、合龙段与结合段同步顶推,省略了九江侧边跨合龙工序;在结合段钢梁与锚跨预应力混凝土梁之间设置锁定结构,保证了结合段施工质量。黄梅侧钢梁采用轻型墩旁托架+双悬臂+单悬臂施工技术,4号墩墩顶三节段采用轻型托架滑移施工,结合段采用浮吊整体吊装,定位后浇筑结合段混凝土,预应力张拉后进行边跨合龙;黄梅侧边跨和中跨合龙段均采用主动合龙,先边跨合龙后中跨合龙。  相似文献   

6.
安庆长江铁路大桥主桥为主跨580m的双塔三索面连续钢桁梁斜拉桥,主桁采用空间三片桁架结构,桁高15.0m,节间长14.5m,主桁间距14.0m。主桥共设中跨、边跨2个合龙点,先合龙中跨,再合龙边跨。根据边跨合龙前的钢梁安装架设状态,对主桥边跨合龙特点进行详细分析,制定了各项合龙措施,通过合龙措施的敏感性分析,确定边跨合龙方案为起顶5号墩支座,回落7号墩支座。按照此合龙方案调整合龙口状态,使里程偏差≤2cm,轴线偏差≤1cm,竖向高程偏差≤3cm,顺利实现了边跨无应力合龙。  相似文献   

7.
沪苏通长江公铁大桥天生港专用航道桥为(140+336+140) m刚性梁柔性拱桥,主梁为三主桁双层板桁组合结构,采用“先梁后拱,主梁双悬臂拼装,拱肋竖向转体”方案进行施工。为确保成桥线形和内力满足设计要求,采用MIDAS Civil软件建立全桥有限元模型,进行施工全过程和成桥分析,基于无应力状态法开展施工控制。钢梁墩顶节间施工时,设置墩旁托架,利用浮吊拼装;对称悬拼期间,为保证纵向稳定性,采用水袋对边跨进行配重,利用扣塔分别张拉2对扣索以改善钢梁受力并调整钢梁线形;采用预降边支点、4号墩钢梁整体预偏,以及扣索索力调整等措施进行钢梁中跨合龙;拱肋竖转后,主要通过扣索完成拱肋合龙调位;拱肋合龙后,从中间向两边张拉吊杆。经实测,该桥钢梁合龙口相对高差在10 mm以内;拱肋合龙口轴向偏差最大2 mm,相对高差最大1 mm;吊杆索力与设计目标索力偏差均在5%内,满足施工控制要求。  相似文献   

8.
武汉二七长江大桥主桥结合梁施工技术   总被引:4,自引:4,他引:0  
武汉二七长江大桥主桥为(90+160+2×616+160+90)m三塔双索面结合梁斜拉桥,其2~6号墩主梁为钢-混结合梁,采用预制拼装施工。4号(中塔)墩墩顶节间梁段采用无托架技术施工,3号、4号墩两侧梁段采用架梁吊机双悬臂对称架设法施工;5号墩上塔柱施工时采取塔梁同步施工技术,5号墩至4号墩跨中部位梁段采用单悬臂架设法施工;5号、6号墩间梁段采用钢管支架法施工。钢梁采用主动合龙技术,先合龙武昌侧梁段,再合龙汉口侧梁段。  相似文献   

9.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面高低塔箱桁组合梁斜拉桥,该桥钢主梁采用箱桁组合结构。主桥钢梁节段船运至桥位,在主墩墩旁搭设简易钢支架,采用1 000t浮吊吊装、拖拉滑移法架设主墩墩顶节段钢梁;拼装800t变幅式桅杆起重机后双悬臂架设钢梁至辅助墩;辅助墩墩顶钢梁采用800t浮吊吊装架设,桥面架梁吊机再悬臂架设钢梁至边墩,将边墩墩顶钢梁分层叠放后再依次用架梁吊机吊装就位;中跨合龙段利用无为侧架梁吊机提升,采取部分斜拉索索力调整、桥塔墩墩顶顶推纵移、温差调整等措施,实现了高精度、快速顺利合龙。  相似文献   

10.
南京大胜关长江大桥6号、8号墩处3主桁钢桁拱采用吊索塔架辅助架梁吊机双悬臂架设,塔架高68.5 m,采用3片桁架结构,由立柱、横向联结系、锚箱3部分组成.塔架底节采用浮吊安装,底节以上节段采用2台塔吊共同安装.塔架每桁设置3层非对称斜拉索,按第1~3层的顺序依次挂设张拉.通过调整6~8号墩处塔架索力使主跨合龙口两侧节点竖向位移、转角一致,最终实现主拱钢梁的精确合龙.  相似文献   

11.
闫兴非  张涛  汪罗英  彭俊 《城市道桥与防洪》2020,(3):50-52,M0008,M0009
平申线航道(上海段)整治工程中泖港大桥主桥为一座预应力混凝土箱梁与钢箱梁混合而成的桥梁,桥梁的总体跨径布置为65 m+135 m+65 m,其中主跨跨中55 m范围布置了钢箱梁其他部分布置为预应力混凝土连续梁。该桥的主梁在中间桥墩处梁高为7.2 m,高跨比为1/18.75,跨中梁高3.2 m,高跨比1/42.18,混凝土部分箱梁梁底按2次抛物线变化,钢箱梁采用等截面形式。对该桥采用ANSYS软件建立板壳实体模型进行主桥整体分析表明,该桥各个结构部位的受力满足规范要求。该桥的施工方法采用了悬臂对称浇筑混凝土梁段、支架上浇筑边跨混凝土合龙段、施工钢混结合段以及整体吊装钢箱梁节段等。运营情况表明该混合梁结构形式具有优良的力学性能,可供类似工程参考。  相似文献   

12.
刘源  李鸥  林吉明 《世界桥梁》2021,49(2):36-42
浙江秀山大桥主桥为主跨926 m的双塔三跨连续钢箱梁悬索桥,全桥加劲梁共分89个安装节段,标准节段吊装重量212.6 t,最大吊装重量247.1 t.桥址处地理环境复杂、海洋环境恶劣,钢箱梁安装难度大.根据现场实际情况,钢箱梁中跨由跨中向桥塔方向对称吊装,两岸边跨由锚碇向桥塔方向对称吊装,先合龙中跨再合龙边跨.施工过程...  相似文献   

13.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

14.
连镇铁路五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁结构,加劲梁恒载集度大(819.1 kN/m)。其中,一期恒载集度达501 kN/m;铁路桥面和公路桥面二期恒载集度分别为233.4 kN/m和84.7 kN/m。针对该桥特点,加劲梁采用整节段吊装,架设时采用不携带铁路二期恒载的方案施工。边跨加劲梁节段利用浮吊整体吊装至滑移支架上,再滑移至设计位置,连接成整体;中跨加劲梁节段采用2台900 t缆载吊机自跨中向两侧桥塔方向架设,节段间上弦设牛腿式临时铰进行铰接,待中跨80%节段吊装后再进行刚接;中跨加劲梁架设后,对边跨加劲梁整体姿态进行调整,通过顶、落梁与中跨加劲梁合龙,合龙后铺设铁路二期恒载。  相似文献   

15.
北京市西六环丰沙铁路分离式立交桥主要施工技术   总被引:2,自引:2,他引:0  
北京市西六环丰沙铁路分离式立交桥主桥为四跨子母塔单索面预应力混凝土部分斜拉桥。为了减少施工对铁路安全运营的影响,主体箱梁采用在3号墩顶上转体施工。2号和3号墩沉井距丰沙铁路路堤很近,沉井下沉时须对铁路路基实时监测;为保证转体球铰及滑道安装精度,在混凝土内预埋设调节螺栓的支撑固定架;箱梁转体过程受力体系变化复杂,需对临时支架采取相应的措施;箱梁预制时,需克服钢筋密集、腹板薄、腹板与水平面夹角小等造成混凝土灌注的困难。箱梁转体靠牵引上转盘上预埋的钢绞线,通过连续张拉千斤顶牵引。最终安全顺利地完成了从沉井基础到梁体的转体施工。  相似文献   

16.
该文结合工程实例,以主跨100m预应力混凝土连续梁桥为背景,分析了温度梯度作用下温度变化对中跨合龙施工的影响,以及利用挂篮进行中跨合龙的原理。通过分析和计算,得出了对连续梁桥合龙段施工有一定参考价值的结论。  相似文献   

17.
布里格里格河谷斜拉桥项目位于摩洛哥王国境内拉巴特绕城高速公路上,离首都拉巴特市区30km。大桥全长951.66m,主桥采用(183+376+183)m叠合梁斜拉桥,桥塔和主梁在塔、梁交接处固结。斜拉桥主梁采用边主梁结构,混凝土边主梁之间通过金属横梁连接,金属横梁上安装预制混凝土桥面板,桥面宽29.82m。梭形混凝土桥塔由四肢分离式曲线型塔柱组成,造型优美,塔墩基础均采用扩大基础。全桥共设80对斜拉索,采用平行钢绞线拉索体系,空间呈扇形索面布置。主梁0号块在桥塔处的临时支架上施工,主梁标准节段采用牵索挂篮施工工艺。  相似文献   

18.
大连滨海大道西延伸线张柏2号高架桥主桥为(50+96+192+70)m S形曲线钢箱梁斜拉桥,桥面铺装层采用热浇注式沥青混凝土摊铺方法施工,摊铺过程中出现了结构位移和应力较大等异常情况。为了解异常情况产生的原因,采用ANSYS软件建立全桥有限元模型(钢箱梁采用壳单元模拟),分析摊铺过程中温度引起的桥塔纵、横向位移,以及主梁纵向、竖向位移和纵向应力。结果表明:摊铺温度导致结构产生较大的位移和应力,主梁和桥塔纵向位移均达22.8 cm,主梁最大竖向位移为25.9 cm,钢箱梁最大拉应力为143 MPa;摊铺过程中,结构纵、横向均存在较大的位移差和应力差,导致变形不协调和局部应力过大;结构位移、应力的计算值与实测值基本一致。该类桥梁施工时应调整摊铺工艺,降低摊铺温度效应。  相似文献   

19.
马立芬  王冰 《桥梁建设》2012,42(1):84-89
昌平跨线桥采用两联跨度为(37+60+79+42.5)m及(42.5+79+42.5)m的钢-混凝土结合连续刚构型式.该桥主梁为钢-混凝土结合梁,钢箱梁采用单箱单室直腹板截面,桥面板为钢筋混凝土结构,钢箱梁在中墩处与混凝土墩身固结,下部结构墩柱均采用矩形桥墩.采用有限元程序MIDAS Civil建立全桥空间结构计算模型,对该桥进行静力计算分析,结果表明钢箱应力及结构强度均满足规范要求.为减少对桥下交通的影响,该桥钢箱梁采用工厂预制、现场吊装的方法施工,预制桥面板按先跨中后支点的顺序施工,采用间断法安装.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号