首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
"十二五"期间,交通运输要素资源数字化水平稳步提高,智能化水平持续发展,发展环境不断优化;建立了全国重点营运车辆联网联控系统,推动了全国道路货运车辆公共监管与服务平台建设。"十三五"期间,将提升中国交通运输行业的智能化水平。同时,加强自动驾驶和车路协同技术发展统筹规划,支持鼓励自动驾驶和车路协同关键技术创新,开展智能驾驶与车路协同标准化工作,加强自动驾驶和车路协同的测试基地建设,开展车路协同集成与试点示范应用,推动中国智能驾驶技术的发展。  相似文献   

2.
智能网联汽车是我国战略发展的重点支持领域。车路协同技术是智能网联汽车的重要应用方向和基础支撑。车路协同仿真验证技术是车联网智能化基础设施建设及示范应用开展的重要保 障。  相似文献   

3.
《世界汽车》2021,(4):102-105
近十年来,"智能汽车"这一概念在全球范围内飞速发展,"智慧座舱"、"辅助驾驶"甚至"车路协同"技术的逐步成熟,为产品带来新架构,为公众带来新体验,为行业带来新模式。然而,新事物的诞生往往伴随着产品力的不成熟与市场的质疑,当前的智能汽车无论在智能交互或是行驶安全方面,多数还无法满足用户场景化的需求。  相似文献   

4.
车路协同系统的应用已是新一代智能交通系统的发展方向,是缓解交通拥堵、减少交通事故的重要手段。本文研究了车路协同通信技术的特点,分析并对比了DSRC、LTE-V2X两种主要面向车路协同关键通信技术,并介绍了在车路协同应用领域极具潜力的5G技术。最后对各种通信方式在不同场景下的通信性能进行实际测试和分析,对智慧公路车路协同系统的发展起到了重大作用。  相似文献   

5.
国内外车路协同系统发展现状综述   总被引:3,自引:0,他引:3  
陈超  吕植勇  付姗姗  彭琪 《交通与计算机》2011,29(1):102-105,109
车路协同系统(CVIS)作为智能交通运输系统(ITS)的重要子系统,近年来备受国内外科研人员关注,是世界交通发达国家的研究、发展与应用热点。文中介绍了CVIS的概念以及内涵,介绍了美国IntelliDriveSM、欧洲eSafety、日本Smartway以及我国车路协同的发展情况,并对我国车路协同未来的发展进行了展望。  相似文献   

6.
正作为业内首个量产应用车路协同系统的整车企业,福特宣布车路协同系统正式落地广州,这是继无锡、长沙之后落地的第三大城市。按照计划,至2021年年底,福特车路协同系统将在四款量产车型全系标配,并接入国内九大城市的智慧交通网络,实现人-车-城市互联的智慧出行。车路协同可使得车与车(V2V)、车与智能基础设施(V2I)、车与人(V2P)之间进行"实时对话"。借助该技术,  相似文献   

7.
<正>自动驾驶与车路协同是未来交通运输领域的战略制高点,将引发道路交通组织和运行形态的变革,是解决当前道路交通安全、拥堵和污染等重大问题的有力手段。发达国家均在实施推进自动驾驶与车路协同发展的相关行动计划。"十三五"期间,我国科技部在"新能源汽车"和"综合交通运输与智能交通"领域设立了多个重点研发计划来支持该领域的发展,力图促使我国在自动驾驶与车路协同理论研究、场景构建、装备研  相似文献   

8.
近年来,车路协同是汽车与交通行业发展的重要方向之一,而车路协同环境建设和推广也成为先导区建设的重中之重。车路协同系统利用无线通信、传感器检测、高精度地图定位、人工智能、计算机等众多技术来获取车辆和道路信息,在实现人、车、路充分协同的同时,从而达到主动提高道路交通安全、最优化利用系统资源、缓解交通拥挤的目标,形成安全、效率、环保的道路交通系统。先导区一般选址在车流量大、道路环境复杂、附近居住人口密集的区域。先导区内汽车智能与网联化测试、V2X场景实现均需要借助于车路协同系统环境。本文介绍了先导区道路交叉口车路协同系统涵盖的技术,以及实现的功能和信息服务场景,并从车端、路端给出了相应场景的解决方案。  相似文献   

9.
安泽萍  贺静  姚翔林 《公路》2021,66(12):270-274
在对现有车路协同场景研究情况分析的基础上,综合考虑交通需求与道路环境属性双重因素,提出了面向高速公路智能车路协同系统的场景构建方法,构建了适合不同高速公路需求的功能完备、场景丰富、要素齐全的车路协同应用场景库,满足新基建与智慧高速建设应用需求,为高速公路车路协同示范应用提供参考.  相似文献   

10.
智能网联汽车已成为汽车技术发展的大势,通过融合智能网联汽车和智慧交通技术,以自动驾驶车辆的需求为核心,应用深度学习、边缘计算以及领先水平的车路感知融合、车路云控协同等方法,构建"智能网联汽车+智能交通+智慧城市"全出行链场景,实现无人驾驶在智慧道路、智慧停车、智慧园区的综合应用,为后续工程建设、产业化落地提供强大的技术支撑,进一步推动自动驾驶产业的发展。  相似文献   

11.
新时代科技革命与产业升级进行得如火如荼,智能网联汽车作为一个新兴产业正快速进入产业化与市场部署阶段,成为汽车行业技术变革的重要突破口。武汉作为国内第一批发展车路协同与智慧城市的“双智”试点城市之一,正在大力促进智能网联车及配套技术的发展和应用。依托武汉光谷区域交通基础设施的工程实例,构建光谷完整的“车路智行的生态系统”,着重研究车路智行一体化的智能网联体系,归纳总结智能网联汽车示范段的建设,为推动自动驾驶、V2X等技术的研发应用进程奠定坚实基础,不断完善光谷智能网联汽车产业链,促进智能网联汽车产业发展。  相似文献   

12.
智能交通系统发展与展望   总被引:3,自引:0,他引:3  
王国锋  宋鹏飞  张蕴灵 《公路》2012,(5):217-222
近几年智能交通系统支撑技术日益成熟,空间信息技术、物联网、云计算等新兴技术与概念快速发展,将引领智能交通向车路协同的未来方向发展,建立一个高效、便捷、安全、环保和舒适的综合交通运输体系。  相似文献   

13.
随着车路协同技术的发展,车路协同安全应用的相关技术是否会影响驾驶人的感知、判断、操作等驾驶行为受到愈来愈多的关注.基于这样的背景,通过对国内外车路协同技术的当前研究进展进行综述,分析车路协同环境下驾驶行为的变化,从而得出在车路协同安全应用技术全面推广之前,应充分评估车路协同技术对驾驶人行为,以及驾驶安全可靠性的影响,特别是如何最大限度地发挥其安全保障作用.  相似文献   

14.
信号控制交叉口是城市道路交通网络中的基本节点,车辆在通过交叉口时频繁地启停和加减速等严重降低了交叉口的通行效率,并产生了更高的燃料消耗和污染物排放。无人驾驶技术中的车路协同技术和自适应巡航控制(Adaptive Cruise Control, ACC)技术为缓解交叉口处的交通拥堵和提高节能减排水平带来了新的契机。ACC车辆可以通过车载检测设备和传感器技术等实时获取自身与前车的行驶状态,并通过ACC控制系统做出比人类驾驶员更精确、稳定和安全的决策判断。根据ACC车辆在信号交叉口车路协同诱导策略下的行驶工况信息,考虑了ACC车辆在信号交叉口车路协同诱导策略下的控制模式,利用诱导策略对ACC车辆的控制模式进行了划分。在智能驾驶模型(IDM)的基础上建立了不同控制模式下的加速度算法,利用MATLAB对信号交叉口车路协同诱导策略下的ACC车辆的交通特性进行仿真模拟,对比分析了传统ACC车辆和车路协同诱导策略下的ACC车辆在通过交叉口时的平均延误、平均燃油消耗和平均污染物排放。仿真结果表明,车路协同诱导策略下的ACC车辆在不同等级车流密度下均能够降低交叉口的延误,并减少车辆的燃油消耗与污染物排放量。  相似文献   

15.
本文基于专用短程通信技术,建立了真实的车路协同系统,并进行了相关的演示和验证;介绍车路协同系统的架构和组成,以及目前系统已经实现的4个场景,并对每个场景的实现和关键技术进行了阐述。本系统对于今后智能网联示范区的建设,具有重要的参考价值和示范作用。  相似文献   

16.
智能网联汽车搭载了先进的环境感知系统及智能逻辑算法功能,具备环境感知及智能决策功能。但对于道路盲区的预测及控制,是单车智能无法跨越的壁垒。目前,路侧感知及车联网技术已成为未来发展无人驾驶汽车、道路通行安全及效率提升的公认技术路线之一。文章通过标准梳理及走访调研国内车联网测试场、示范区,以测试场景为依托,提出道路技术参数设计方法及最小通信距离设计方法,结合设备设施布置要求,提出一种封闭测试场车路协同系统设计方法,满足智能网联汽车车路协同全场景封闭场地闭环测试及验证。  相似文献   

17.
车路协同技术不断成熟,智慧城市发展不断进步,智慧道路研究和建设尤其重要。研究智慧道路需求分析,明确智慧路口和全息路段两个典型应用场景,通过构建道路数字基础设施,研究多方位立体监测与多因素动态耦合下道路安全风险精确感知方法,实现微观场景内交通参与物认知、运动状态及协同感知,进而通过边缘计算单元支撑车路协同,为面向车路协同场景的智慧道路建设提供技术条件。  相似文献   

18.
iECar(Interactive Electric Car)交互式电动汽车采用轮毂电机四轮独立驱动、自动化整车控制系统和面向车路协同与智能交通系统的交互式系统,便于实现智能协同驾驶。文中介绍了iECar的整车设计,包括蕴含未来电动汽车小巧时尚理念的车身外观和适合四轮独立驱动电动汽车的纵向承载而横向不承载式车身结构、基于DSP芯片的自动化整车控制系统、基于ARM处理器的面向车路协同与智能交通系统的交互式系统;分析了iECar试验车的整车性能,结果显示试验性能与计算性能比较一致,验证了整车设计是合理的。  相似文献   

19.
汽车保有量的增加和能耗排放法规日益严格的限制给车辆节能减排提出了巨大挑战,网联化、智能化和电气化是提高未来交通效率和减少公路能源消耗的三大支柱。为了全面了解智能网联汽车节能减排的前沿问题与研究进展,对当前经济驾驶领域的重点问题进行了总体概述。首先,从广义的能量转换角度总结了智能车辆节能优化技术的本质和3个过程,其中Wheels to Distance环节的车辆系统优化是挖掘汽车节能潜力的重要一环,针对其介绍了智能网联汽车节能优化问题的基本数学原理;其次,从智能运输系统的各类非同源异构数据出发,分别从人-车交互、车-车通信、车-路感知三方面阐述来源于"人-车-路"交互体系的智能信息与数据;然后,针对单车智能网联环境下的多维度信息与先进控制技术相结合的关键问题,从考虑道路坡度预测巡航控制、跟车工况预测巡航控制、智能辅助驾驶和车道变换等应用场景进行具体介绍;针对"人-车-路-云"多源异构环境下车辆行为协同节能关键科学问题,从经济驾驶、多车协同节能、道路交叉口车路协同节能和车云协同节能等方面详细介绍研究现状;并进一步介绍电气化公路系统的前瞻性研究,说明融合智能化信息的E-highway节能潜力和智能重型商用车协同节能的未来发展趋势。最后,总结并梳理智能化信息对于提升车辆节能的重要影响,并展望了其在理论与实际层面遇到的挑战。  相似文献   

20.
车队协同驾驶是车路协同技术在智能交通领域中的重要应用与示范。混成动态系统理论与半实物仿真技术已成为研究车队协同驾驶系统的重要手段。阐述了车队协同驾驶在智能车路系统中应用的可行性和优点;对近十年车队协同驾驶研究进行了回顾和综述,包括系统结构、车车通信、车队协作策略以及半实物仿真技术等4个方面;概括了车队协同驾驶混成控制系统内容与仿真手段,并给出车队协同驾驶半实物仿真结果;对车队协同驾驶混成控制研究进行了总结和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号