共查询到13条相似文献,搜索用时 62 毫秒
1.
2.
道路交通事故精准预测是有效提升交通安全的重要手段,由于事故数据经常呈现非线性、波动性、无周期性等特征,现有的算法存在预测效果不佳的问题。为此本文提出基于集合经验模态分解降噪算法(ensemble empirical mode decomposition,EEMD)和优化长短时记忆神经网络(long short-term memory,LSTM)的交通事故数量预测模型。在单一模型的基础上,引入降噪算法EEMD对噪声大的交通事故时间序列进行降噪处理,利用EEMD对事故时间序列进行分解得到多个子序列和1个残差项;基于粒子群优化算法(particle swarm optimization,PSO)优化LSTM网络结构参数,并在LSTM的最优网络结构下提取数据中的时间特征信息进行预测,对各子序列及残差的预测结果求和得到最终预测结果。研究结果表明:相对于EMD-PSO-LSTM,PSO-LSTM,EEMD-LSTM,LSTM这4个模型,EEMD-PSO-LSTM的预测效果最好,其对应的预测误差ermse分别降低了8.7%、48.3%、53.1%、57.6%,误差em... 相似文献
3.
针对高速公路易结冰路段的路面凝冰预测问题,提出了一种基于特征相关度分析的路面凝冰短时预测方法。该方法利用路侧设备的测量数据,包括结冰厚度、相对湿度、风向与风速等,通过ADF(Augment Dickey-Fuller)检验方法分析数据集的平稳性,进而设计出基于长短期记忆网络(Long Short-term Memory, LSTM)的路面凝冰短时预测算法。根据Spearman相关度系数法分析计算上述多种凝冰监测数据的相关度与置信度,并形成基于Spearman特征相关度的数据筛选模型,优化LSTM神经网络中的输入数据集。在此基础上,搭建面向凝冰预测误差的LSTM神经网络模型,并利用筛选后的凝冰数据集训练优化预测算法中的模型参数,提高目标路段路面凝冰预测的效率与精度。最后,通过数值仿真分析比较不同特征相关度下路面凝冰短时预测算法的均方根误差,确定最优预测模型,并于西延高速KM200+918路段进行实地测试。研究结果表明:路侧设备的测量数据中相关度较低的数据对路面凝冰预测算法存在反向作用,并非将所有数据进行组合即可得到最优结果,需对测量数据进行有效筛选,进而优化LSTM神经网络,提高凝冰预测... 相似文献
4.
为提高边坡位移预测的精度,提出一种融合Gaussian-filter算法与LSTM预测算法的GF-LSTM混合预测模型,依托某铁路边坡工程监测数据进行验证分析。结果表明:GF-LSTM模型不仅能对原始监测数据集进行预处理,还能提供精准的预测结果;GF-LSTM预测模型可很好地反映边坡位移的上下波动,所得的预测值与实测值整体趋势贴合、相关性极高,R2分别为0.915、0.908,均大于0.900;由降噪前后对比可知:两测点R2分别增加了0.143、0.185,而MAE和MAPE分别降低了0.104与0.874%、0.246与0.755%,表明降噪处理后各测点的预测精度和预测误差得到改善。 相似文献
5.
针对交通状态复杂的高速公路交织区域,经验丰富的驾驶人能够通过正确地推断周围车辆的未来运动进行及时的车道变换,这对于实现安全高效的自动驾驶至关重要,然而目前的自动驾驶车辆往往缺乏这种预测能力。为此,基于深度学习理论,提出了一种结合注意力机制和编-解码器结构的交织区车辆强制性变道轨迹预测方法,利用Next Generation Simulation(NGSIM)数据集提取车辆变道过程中的关键特征,并引入碰撞时间(Time to Collision,TTC)和避免碰撞减速度(Deceleration Rate to Avoid a Crash,DRAC)2种风险指标,将变道车辆及其周围车辆视为一个整体状态单元,同时补全状态单元内部不同车辆在横向和纵向上的时空状态特征,从而更有效地刻画车辆间的动态交互行为;然后将不同观测车辆的连续窗口序列输入基于长短期记忆网络(Long Short-term Memory,LSTM)的编-解码器,预测交织区车辆变道的未来运动轨迹,通过添加软注意力模块,使模型能够集中聚焦于影响车辆在不同时刻下位置变化的关键信息,再现了真实交通场景下车辆的变道行为。试验验证表明:基于注意力机制的编-解码器模型与当前流行的卷积长短期记忆网络、极限梯度提升树等模型相比具有更高的轨迹预测精度,在长时域的变道轨迹拟合上有显著的优越性,为辅助和自动驾驶领域的发展提供了新思路。 相似文献
6.
在城市道路交通中,信号交叉口区域内车辆频繁停车启动的现象,加剧了整体交通流的能源消耗、污染排放与车辆延误。为了减少信号交叉口启停波现象对整体交通流产生的负面影响,以面向未来人工驾驶车辆(HDV)/智能网联车辆(CAV)混合构成的新型混合交通环境为基础,提出了一种基于出发时刻预测的生态驾驶方法,通过优化CAV的驾驶轨迹,减少交叉口区域的车辆延误和能源消耗。首先,对混合交通流的基本图模型进行了分析,根据启停波影响范围,划分CAV通过交叉口的驾驶场景;然后,建立了子区渗透率对饱和车头时距的影响关系,预测了CAV以当前饱和车头时距通过交叉口的时间;最后,结合车辆与交叉口的距离,利用分段三角函数模型,生成其通过交叉口的速度限制曲线,并将优化速度嵌入到智能车辆的跟驰模型中作为限制速度,从而使CAV在无法通过当前绿灯窗口的条件下,实现提前减速,在通过交叉口区域后解除速度限制,切换回自身的跟驰模型。此外,还提出了平均综合效能这一指标来综合评价驾驶策略在效率和能耗2个方面的性能,并将提出的基于出发时刻预测的生态驾驶方法与传统网联车辆控制方法、经典交叉口节能控制方法进行了对比。研究结果表明:提出的出发时刻预测方法可以精确预测CAV在交叉口的出发时刻,有效减少车辆的能源消耗与污染排放,同时提高信号交叉口的通行效率;在渗透率大于60%情况下,该方法对系统效能的提高达到12%左右,在10%渗透率条件下也可以达到6%的效能增益;在交通饱和流率在0.5~0.9的范围内时,系统的效能增益较明显。 相似文献
7.
轮胎胎压不足的状况一旦发生,易导致行车过程中车辆的失控并带来不可逆的交通伤亡事故。而轮胎的慢漏气故障是一种常见的交通事故诱因,且该诱因不易察觉。因此,为了及时预测到轮胎的慢漏气故障,本研究以某型纯电动车的轮胎胎压时间序列变化数据为基准数据,实现改进的长短期记忆网络,建构基于神经网络的轮胎慢漏气时间序列预测模型。首先,分别进行原始时间序列的正常胎压变化趋势与异常胎压变化趋势的数据筛选与清洗等工作;其次,分别基于变分模态分解及自适应差分进化算法,实现长短期记忆网络的模型训练;最终,分别基于慢漏气时间序列校验集,进行消融实验的预测结果评估与可视化样例的对比分析。消融实验结果相较于基础的长短期记忆网络提升了15%左右的性能,可视化样例中大部分的慢漏气时间预测差值波动范围在6h内。综合实验结果可验证本研究所实现的基于神经网络的轮胎慢漏气时间序列预测模型的优越性。 相似文献
8.
基于EMD和HHT的内燃机瞬时转速信号分析 总被引:3,自引:0,他引:3
简述了经验模态分解(EMD)和Hilbert-Huang变换(HHT)的基本方法和原理,对4缸汽油机在转速2 500 r/min、扭矩83.6 N.m工况下的瞬时转速信号进行了EMD分解,将分解后的各个固有模态函数(IMF)分量作了HHT变换和FFT变换,得到了各IMF分量的瞬时频率和瞬时幅值随时间变化的关系,结合内燃机理论,分析各个分量产生的原因。研究结果表明,EMD算法能够有效地分离瞬时转速信号中的各个频段的信息,并且各IMF分量都有其物理意义。 相似文献
9.
10.
11.
为交通管理部门和出行大众提供精准的事故高发黑点预警信息具有重要的意义。为此,研究了1种基于双向长短期记忆神经网络(bidirectional long short-term memory neural network,BiLSTM)的黑点路段交通事故频次预测方法。通过对传统K-means聚类算法的k值选取进行改进,实现了道路交通事故黑点的有效识别,并统计黑点每天事故数作为事故时间序列;利用小波分解对该序列进行降噪处理,通过多层网格搜索法对隐藏层层数、神经元个数等模型的参数进行标定,构建了基于BiLSTM网络的事故频次预测模型;采用滑动窗口的方式将事故时间序列作为内部参数输入模型,以交通流量、节假日、事故天气和事故发生环境等特征作为外部参数,对事故黑点路段未来1 d内可能发生的事故数进行预测,并基于预测结果提出了1种事故黑点路段交通事故预警模型;以浙江省宁波市交警部门某辖区2020年4月—2021年9月常态采集的事故数据为测试集,以7 d的事故数据预测未来1 d的黑点路段事故频次,将BiLSTM模型与门控循环神经网络(GRU)模型、长短期记忆神经网络(LSTM)模型、反向传播神经网络(BP)模型、自回归滑动平均(ARIMA)模型和支持向量机(SVR)模型等事故预测模型进行对比。结果表明:BiLSTM模型、GRU模型、LSTM模型、BP模型、ARIMA模型和SVR模型对各事故黑点的日均事故频次平均预测精度分别为93.1%、88.8%、88.0%、85.2%、84.4%和84.2%;均方根误差分别为0.092、0.146、0.142、0.147、0.177和0.176。该结果说明,所提BiLSTM模型具有更高的预测精度和更强的鲁棒性。 相似文献
12.