首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
客运专线路基工程的防冻胀处理措施   总被引:1,自引:0,他引:1  
赵润涛  李季宏  李曙光 《铁道勘察》2011,37(4):70-71,83
季节性冻土区路基冻胀和融沉使路基产生不均匀变形,是影响铁路运行速度和安全的重大隐患之一,解决路基冻胀问题是季节性冻土区路基设计的关键。结合哈大客运专线沈大段路基工程设计情况,对季节性冻土区客运专线路基工程防冻胀处理措施进行了说明。  相似文献   

2.
路基冻胀问题是影响季节性冻土区高速铁路平顺性的核心问题之一,严重影响高铁运营质量和安全。混凝土基床是一种新型的高速铁路路基防冻胀结构,能够有效减少路基冻胀问题,但也存在其本身在季节性冻土区气候环境下的变形问题。使用顺序耦合热应力分析对混凝土基床开展仿真计算,分析其在不同长度、不同温度环境下的变形规律。研究结果表明:混凝土基床存在冬季两端翘曲现象,在极端条件下变形差可达4.8 mm,结构长度和环境气温均对变形有影响。  相似文献   

3.
季节性冻土地区路基冻结深度试验研究   总被引:1,自引:0,他引:1  
在季节性冻土地区修建无砟轨道铁路,路基冻胀变形控制是突出技术难题。通过对填筑粗颗粒填料的路基、天然地基与保温路基的温度及变形测试,确定不同土质冻结指数与冻结深度的关系,证明设置保温层可以降低冻结深度,是路基冻胀变形控制的一种有效措施。  相似文献   

4.
探讨季节性冻土及其病害的形成机理,结合最新的研究成果讨论铁路路基防止冻胀的一般措施.详细介绍哈大铁路客运专线上路基防冻胀措施.  相似文献   

5.
季节性冻土区铁路客运专线路基的冻胀特性分析与措施   总被引:3,自引:1,他引:2  
在季节性冻土区的铁路客运专线路基工程中,冻胀、融沉和翻浆都会对基床产生较严重的破坏。根据路基冻胀观测所获得的资料,分别分析了温度、水分、土质、路基类型等因素对路基冻胀的影响。季节性冻融翻浆是影响路基稳定性的关键所在,通过对其产生影响的主要因素和防止措施的分析和探讨,提出了提高工程建设质量的方法及技术措施,对提高工程质量、降低运营维护成本具有重要意义。  相似文献   

6.
季节性冻土区高速铁路路基冻深研究   总被引:3,自引:0,他引:3  
针对季节性冻土区高速铁路路基冻胀的最大变形量应小于5mm的严格要求,开展季节性冻土区高速铁路路基冻深的研究。在综合分析国内外相关冻深求解方法的基础上,提出采用改进的Berggren法计算高速铁路路基设计冻深的公式。该公式考虑了路基的热力特性、气象条件以及地基条件,适用于特性各异的多层土路基。运用现场监测和基于比奥固结理论的有限元仿真分析方法及改进Berggren法,对某典型冻土区段高速铁路的路基冻胀及温度场和位移场进行测量、计算和分析,结果表明:路基冻深的发展历经较浅且小幅波动、向下快速发展且达到最大、逐渐减小和浅层小幅波动等阶段;路基冻胀变形主要发生在冻深的70%范围内;该典型冻土区段最大冻深的有限元仿真计算值为1.98m,改进的Berggren法计算值为1.94m,与实际监测值1.90m的计算误差分别仅为4.2%和2.4%,表明有限元仿真分析方法和改进的Berggren法均为确定路基冻深的有效手段。  相似文献   

7.
针对青藏铁路高温冻土区普通填土路基的融沉变形,基于拉格朗日法描述的大变形固结理论及考虑相变作用的路基传热理论,对高温冻土区不同高度填土路基的温度场和地基融化固结变形进行计算分析,并与现场监测结果进行对比。温度场分析结果表明,高温冻土区4和6m高填土路基在短期内可使冻土上限略微抬升,但下伏多年冻土存在缓慢升温过程,其升温幅度每年约为0.02℃左右;随着气候逐渐变暖,填土路基下冻土上限在后期会逐渐下降,且填土路基高度越小则上限下降量越大,最终在路基下部形成融化盘。融化固结变形分析结果表明,填土路基沉降变形表现出季节性,即暖季沉降变形发展迅速,冷季发展缓慢,发展趋势与现场监测结果吻合良好;在给定的地质条件下,2,4和6m高填土路基在竣工50年后其沉降变形量分别为255.2,470.4和689.7mm,即沉降变形量与其高度呈正比,且高填土路基沉降变形的季节性更显著;填土路基高度和多年冻土的含冰量是影响填土路基沉降变形的主要因素。  相似文献   

8.
气候变暖条件下青藏铁路路桥过渡段长期热稳定性研究   总被引:1,自引:1,他引:0  
基于过渡段相变的二维传热分析模型,对未来50年青藏铁路路桥过渡段温度场进行分析与预测,并定量研究过渡段高度和冻土类型对路桥过渡段长期热稳定性的影响。计算结果表明:1路桥过渡段下冻土上限由第5年的天然地表以上2.5 m,下降到第50年后的天然地表以下4.3 m,平均融化速率为15.11 cm/年;2过渡段冻土上限与过渡段高度呈非线性关系,随过渡段高度的增加,过渡段冻土上限先减小后增加;3随着冻土地基含冰量的增加,过渡段下融化盘径与最大融化深度逐渐增大,同时相同含冰量冻土地基融化盘径与融化深度的大小均随着距桥台距离的增大呈先增大后减小趋势,且最大融化深度均发生在距台前4 m左右处。  相似文献   

9.
季节性冻土区路基冻害一直是困扰铁路工程建设和运营的核心问题.针对兰新铁路西段路基冻害严重的问题,探讨不同工程措施对路基冻融循环过程中含水率变化的影响,以及含水率对路基冻结深度及冻胀变形的影响规律.研究结果表明,季节性冻结对兰新铁路西段路基含水率影响的范围在0.4~0.8m,影响深度有限;"隔一挖一"、"隔三挖一"等工程...  相似文献   

10.
沈光华 《中国铁路》2022,(3):109-117
铁路路基冻胀受阳光照射角度影响,存在冻胀幅值在线路横向分布不均匀现象,即阴阳坡效应。为研究路基阴阳坡冻胀对路桥过渡段无砟轨道受力与变形的影响,建立无砟轨道-路桥过渡段空间耦合模型,分析路桥过渡段阴阳坡效应比、冻胀幅值、冻胀波长与列车荷载等多种因素下轨道结构受力、层间离缝与钢轨不平顺等特征。研究结果表明:路基冻胀的阴阳坡效应对底座板应力分布及轨道几何不平顺影响较大。阴阳坡效应比从0增至1的过程中,底座板阴坡的应力增幅可达18.6%,钢轨垂向变形量相差可达1.94 mm;冻胀波长10 m,冻胀幅值从5 mm增至10、20 mm时,离缝量增幅可达2.26倍与1.87倍;冻胀幅值10 mm,冻胀波长从10 m增至20 m时,底座板应力减小73.37%,离缝量减小81.66%;路基冻胀导致车辆动力响应大幅增加,路基冻胀的阴阳坡效应导致车辆横向动力指标增大。  相似文献   

11.
研究目的:对于路桥过渡段较多的高速铁路地段,控制路桥过渡段的沉降差是保证列车运行平顺性的重要因素,尤其是处于深季节冻土区的高速铁路路桥过渡段,其变形控制更加严格。本文以哈齐高铁某路桥过渡段为试验监测断面,基于现场地温、冻胀变形和沉降变形的试验数据,分析寒区高速铁路路桥过渡段的地温、基床表面的冻胀变形和基底的沉降变形,揭示寒区高速铁路路桥过渡段的地温与变形特征,从而评价路桥过渡段的稳定性状况。研究结论:(1)建设初期,采用掺3%水泥的级配碎石作为桥后回填料较粗粒土易吸热和放热;两者在相应深度处的温差随时间的推移逐渐减小并趋于0℃,最终桥后级配碎石与粗粒土达到新的热力平衡;(2)采用掺3%水泥的级配碎石作为路桥过渡段桥后回填材料,其基床表层与桥台间的最大变形差值为4.6 mm,满足规范要求;(3)级配碎石作为桥后回填材料,其基床表层的变形随时空的变化过程分为四个阶段:冻胀快速发展期、冻胀相对稳定期、冻胀抬升期和融化回落期;(4)级配碎石作为桥后回填材料,其冻结深度与基床表层的冻胀变形呈非线性关系,但路堤的最大冻结深度影响其基床表层的最大累积冻胀值;(5)路基阳坡的沉降量较阴坡大,离阴面坡脚越近,基底的沉降量和变形幅度越小;路基施工完成至铺轨前,基底沉降随时间的推移缓慢增大,但目前基底各测点沉降量均满足规范要求;(6)该研究成果可为今后季冻区类似工程设计、施工和维护提供参考。  相似文献   

12.
青藏线格拉段全长1142km,是世界上海拔最高、线路最长的高原铁路。格拉段沿途所经过地区多为3500~5100m的高海拔地区及多年冻土区段,冻土在暖季易发生融沉、寒季易发生冻胀变形的特性,影响路基的稳定性,易导致线路产生病害,从而影响行车安全。通过分析目前格拉段冻土路基存在的问题,结合近年对格拉段冻土路基防护措施进行的补强工程,论述提高冻土路基稳定性对策,为铁路运输安全提供基础保障。  相似文献   

13.
针对寒区铁路路基冻胀整治难题,以我国一寒区铁路路桥过渡段冻害整治工点为依托,介绍了一种可在运营条件下实施的路基微型盾构置换方法。基于数值计算软件建立了环境-路基-盾构置换层-地基的多层结构水热力耦合模型,采用数值计算方法分析路基内部水分场、温度场、冻胀变形场的影响机理及演化规律,验证了盾构置换层所起冷屏障层、水分阻滞层、零冻胀填料夹层等预期效应。综合现场测试和计算结果分析,论证了微型盾构置换方法用于路基冻害整治的有效性与实用性。  相似文献   

14.
无砟轨道路基膨胀诱发钢轨上拱是高铁建设运营面临的常见病害之一,路桥过渡段是路基膨胀病害的高发路段,为研究高铁路桥过渡段路基膨胀后钢轨上拱分布及路基结构变形规律。以一处典型过渡段路基膨胀工点为例,通过现场监测和室内试验判别轨道上拱情况及路基膨胀层位,并通过数值模拟计算研究路基基床膨胀对过渡段路基结构的影响规律。研究结果表明:水流下渗与基床填料中的蒙脱石作用是导致填料发生膨胀的主要诱因;桥梁对路基膨胀引起的钢轨上拱具有明显的阻隔效应,临近桥台侧钢轨上拱变化范围明显小于远离桥台侧;路桥过渡段基床填料膨胀率为0.08%时,钢轨上拱量达到无砟轨道钢轨上拱可调节临界值4 mm;临近桥台侧钢轨轴向应力峰值远大于远离桥台侧。  相似文献   

15.
季节性冻土区和多年冻土区桥梁结构地震反应分析   总被引:1,自引:0,他引:1  
冻土层的存在,对桥梁结构抗震安全性的影响是一个值得重视的问题。本文利用黏-弹性边界模拟波向无穷远辐射的结构-地基土一体化计算方法,对季节性冻土区和多年冻土区桥梁结构在不同地震波作用下的反应进行计算,分析冻土层的变化对桥梁结构地震反应的影响,总结在地震荷载作用下,不同场地、不同的冻土厚度、不同高度的桥墩和不同基础条件下桥墩应力分布的一般规律。分析结果表明:在Ⅱ类场地上,冻土层对桥墩地震反应的影响十分显著,不同类型冻土场地上桥墩的最大反应差值可达1倍以上;墩高在10~22m时,冻土层对桥墩地震反应的影响最为显著;不同类型的桥墩基础,对冬夏两季桥墩的地震反应的影响不大;在一般情况下,桥墩的地震反应与冻土性质、桥墩的动力特性以及地震波的性质均密切相关,按融土状态进行设计往往是不安全的,需要考虑桥墩与冻土层相互作用的影响。  相似文献   

16.
针对哈尔滨至牡丹江电气化改造工程季节性冻土分布的实际工程特点,结合季节性冻土条件下接触网基础的设计理念,对本项目选用的扩大型钢柱基础和不带扩底的拉线基础进行切向冻胀应力计算分析,并考虑影响切向冻胀力的水分、土质、负温以及基础侧表面的粗糙度等主要因素,提出了对钢柱基础采用换填加扩大型基础的处理措施,对接触网的下锚拉线基础提出了换填及加大埋深等防冻胀处理措施以抵抗季节性冻土的上拔力。  相似文献   

17.
根据京通线试验段路基冻胀和含水率的观测数据,对寒冷地区普速铁路路基的冻融周期、冻胀空间分布、冻胀历年重复性、不均匀冻胀发生部位和冻胀量作了统计分析,总结了路基冻胀对线路几何尺寸变化的影响规律,对各冻胀阶段的线路冻害整修工作给出建议。在冻胀的上涨期间和回落期间应对不均匀冻胀造成的几何尺寸超限及时加以处理,尤其是对路桥过渡段、涵洞顶部更应加强冻害检修。  相似文献   

18.
刘端 《铁道建筑》2007,(9):52-54
结合青藏铁路冻土区路基施工工程,分析了施工过程中对路基土地温场发展及路基变形影响因素,指出填土性质、填土季节和施工组织对冻土的热影响不仅仅表现在施工建设期间的路基变形过程,还表现在长期运营期间的温度场变化过程,并提出了减少传入冻土层热量的工程控制对策。  相似文献   

19.
遂渝铁路刚性路基动应力测试分析   总被引:1,自引:1,他引:0  
通过对遂渝铁路刚性路基进行动应力现场测试,分析研究刚性路基沿路桥过渡段线路纵向的动应力分布规律、列车速度和动应力的关系以及列车驶向对动应力的影响;并且将测试数据与一般路基过渡段进行对比分析。分析表明:桥隧间刚性短路基较好地解决了路桥间长期存在的巨大刚度差问题,表现为桥台及其附近位置的路基面动应力值相对较小并变化平稳。  相似文献   

20.
季节性冻土路基冻胀性分析及治理措施   总被引:2,自引:0,他引:2  
在介绍地基土冻胀机理的基础上,对影响地基土冻胀性的主要因素进行了详细的分析,并据此对季节性冻土地段铁路路基的冻害情况进行分析,提出了具体的治理措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号