首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
宁波中兴大桥为(64+86+400+86+64)m的单索面矮塔斜拉桥,中跨有索区钢箱梁采用悬臂拼装方案施工,设置一个合龙段。为保证主梁合龙施工精度及质量,结合结构体系特点,中跨合龙采用配切合龙法。在合龙施工中,采取了免压重合龙观测技术、折线配切方法进行合龙段精细配切,并采用对拉螺栓对合龙段主梁快速临时锁定。该桥主梁合龙后,中跨合龙口最大高差分别为6 mm,轴线偏差在9 mm以内,焊缝宽度均为10~17 mm。实践结果表明,该桥合龙施工技术切实可行、施工简便,合龙精度满足施工要求。  相似文献   

2.
为研究斜拉-悬索协作体系桥施工中的重叠区架设方法、主梁梁段间连接情况及吊索、斜拉索安装方法对施工过程的影响,提出综合考虑结构内力及经济性的多因素分析方法,用以指导合理施工方案的比选。首先,基于斜拉-悬索协作体系架梁一般方法,对某公铁两用斜拉-悬索协作体系桥拟定4种不同的可行性施工方案;然后,基于全桥有限元模型的倒拆施工模拟计算,对结构内力及经济性指标进行分析,揭示各指标的变化规律,并确定了最优的施工方案。结果表明:当吊索设计为非张拉型时,可采用斜拉索区逐段刚接、重叠区与吊索区逐段铰接的梁段连接方式,待合龙后通过压重实现梁段刚接,最后张拉重叠区斜拉索;当吊索设计为张拉型时,可采用逐段刚接的梁段连接方式,且斜拉索及吊索应采用分次张拉。  相似文献   

3.
港珠澳大桥青州航道桥为(110+236+458+236+110)m的斜拉-连续组合体系双塔双索面钢箱梁斜拉桥,有索区主梁采用悬臂拼装方案施工,无索区主梁采用整体吊装方案施工,两侧次边跨及中跨均设1个合龙段。为保证主梁合龙施工精度及质量,结合结构体系特点,次边跨合龙采用顶推+配切合龙的方法,按照先合龙、后张拉合龙段斜拉索的工序进行合龙施工;中跨合龙采用配切合龙的方法;在合龙施工中,采取了免压重合龙观测技术,并采取折线配切方法进行合龙段精细配切。该桥主梁合龙后,次边跨及中跨合龙口最大高差分别为6mm和1mm,轴线偏差均在5mm以内,焊缝宽度均为10~15mm。实践结果表明:该桥合龙施工技术切实可行,施工简便,合龙精度满足施工要求。  相似文献   

4.
沪苏通长江公铁大桥天生港专用航道桥为(140+336+140) m刚性梁柔性拱桥,主梁为三主桁双层板桁组合结构,采用“先梁后拱,主梁双悬臂拼装,拱肋竖向转体”方案进行施工。为确保成桥线形和内力满足设计要求,采用MIDAS Civil软件建立全桥有限元模型,进行施工全过程和成桥分析,基于无应力状态法开展施工控制。钢梁墩顶节间施工时,设置墩旁托架,利用浮吊拼装;对称悬拼期间,为保证纵向稳定性,采用水袋对边跨进行配重,利用扣塔分别张拉2对扣索以改善钢梁受力并调整钢梁线形;采用预降边支点、4号墩钢梁整体预偏,以及扣索索力调整等措施进行钢梁中跨合龙;拱肋竖转后,主要通过扣索完成拱肋合龙调位;拱肋合龙后,从中间向两边张拉吊杆。经实测,该桥钢梁合龙口相对高差在10 mm以内;拱肋合龙口轴向偏差最大2 mm,相对高差最大1 mm;吊杆索力与设计目标索力偏差均在5%内,满足施工控制要求。  相似文献   

5.
斜拉-悬索协作体系桥梁整体刚度大,在大跨公铁两用桥中极具竞争力。该文依托在建的博斯普鲁斯海峡三桥,从不同施工工序、不同合龙口位置、结构受力特性、工期和施工措施等方面对地锚式协作体系桥梁3种总体施工方案进行对比。结果表明:跨中合龙方案、重叠区拉吊索同步施工合龙方案和重叠区拉吊索异步施工合龙方案均可行,其中重叠区拉吊索异步施工合龙方案具有结构受力合理、工期较短、合龙便利等优点,推荐采用。  相似文献   

6.
武汉二七长江大桥跨中钢梁合龙施工技术   总被引:1,自引:1,他引:0  
武汉二七长江大桥主梁采用混合梁,其中汉口及武昌岸90m边跨为混凝土梁,其余梁段均为工字形截面钢-混结合梁。施工时,4号墩侧钢梁采用双悬臂对称架设,5号(3号)墩侧钢梁采用单悬臂由6号(2号)墩向跨中方向架设,跨中钢梁合龙段设置在ZL35节段。为选择有效的合龙调整措施,采用SCDS2008软件对合龙前钢梁进行敏感性分析,分析结果表明:不同的水平对拉荷载对合龙口水平位移影响较大;压重和斜拉索张拉对合龙口竖向位移影响较大;采用移动吊机调整竖向位移可控性较差。根据敏感性分析,合龙前对跨中钢梁标高及转角、纵向位移、上下游高差及轴线偏位进行调整。最终通过在5号(3号)墩布置千斤顶整体纵向移动钢梁、对孔、安装冲钉实现跨中钢梁主动合龙。  相似文献   

7.
广州明珠湾大桥主桥为(96+164+436+164+96+60) m中承式钢桁拱桥,采用双层桥面布置,主梁采用N形三主桁钢桁梁结构。主桥采用斜拉扣挂法、拱梁同步架设;中跨合龙时,拱肋与主梁分别采用"多点同步合龙"与"节点拼装合龙"法进行先拱后梁施工,以提高大桥的合龙效率。通过敏感性分析确定该桥采用26号、29号墩顶、落梁为主,竖向、横向、纵向顶拉为辅的合龙措施调整拱肋合龙口空间姿态。该桥中跨合龙施工中,在边跨采用抗倾覆压重设计,以控制大桥悬臂施工阶段由自重产生的倾覆力矩;在26号、29号墩顶支座处布置顶、落梁及纵移装置,以消除合龙口高差与转角位移,实现精准对位;在拱肋与主梁合龙口设置微调装置,以实现钢梁合龙口间距微调;在27号主墩设置顶推装置,使结构整体纵移0.085 m,实现上、下拱肋同步合龙;主梁合龙节点杆件拼装后,利用吊杆与顶拉装置调节高差与合龙口间距,实现大桥无应力精确合龙。  相似文献   

8.
李少骏  段雪炜 《桥梁建设》2023,(S2):112-118
G3铜陵长江公铁大桥主桥为(127.5+131+988+131+127.5) m公铁两用斜拉-悬索协作体系桥,双层桥面布置,上层为高速公路,下层为普速铁路与城际铁路。主梁为两主桁钢桁梁结构,采用三角形桁式,桁高13.5 m,桁宽35.0 m。上、下弦杆采用箱形截面,腹杆采用H形、王字形(腹板带肋H形)和箱形截面。上、下层桥面采用正交异性钢桥面板(下层压重区域采用整箱)与主桁形成板(箱)桁组合结构。为改善主桁节点受力,将腹杆的腹板在节点内延至上弦杆底板和下弦杆顶板。斜拉索和吊索的交叉区梁上锚固点采用纵向错开、横向偏移布置。采用有限元软件对结构进行整体和局部计算,结果表明:结构设计满足规范要求。主梁节段为全焊结构,边跨采用顶推施工,中跨斜拉段采用架梁吊机单悬臂施工,悬吊段采用缆载吊机由跨中向桥塔方向安装,合龙段设在斜拉-悬吊交叉区。  相似文献   

9.
武汉青山长江公路大桥主桥为主跨938m的双塔双索面斜拉桥,主梁采用混合梁结构。其中,边跨主梁采用钢箱结合梁;中跨主梁采用整体式钢箱梁,钢梁宽48m、高4.5m。中跨钢箱梁共59个节段,其中合龙段长11.4m,重约305t,节段间采用栓焊组合连接。大桥先施工边跨钢箱结合梁,再施工中跨钢箱梁,最后采用顶推辅助合龙方案施工中跨合龙段。合龙段在工厂精确匹配制造后运至桥位处,将合龙口一侧主梁往边跨侧顶推15cm,利用2台500t桥面吊机抬吊合龙段嵌入合龙口;完成合龙段与一侧钢梁的栓焊连接后,再将钢梁往跨中顶推复位;利用预设的三向偏差调整装置调整合龙口偏差并锁定,先栓后焊完成合龙,解除临时锁定,实现大桥体系转换。  相似文献   

10.
坦桑尼亚坦桑蓝跨海大桥主桥为(85+4×125+85) m五塔六跨矮塔斜拉桥,主梁为鱼腹式预应力混凝土等高箱梁,采用普通挂篮悬浇施工,设6个合龙口。为选择边跨、次边跨和中跨合理的合龙顺序,采用MIDAS Civil软件建立主桥不同合龙顺序有限元模型,分析合龙顺序对主梁恒载预拱度、应力、合龙阶段位移以及成桥索力的影响。结果表明:合龙顺序对主梁恒载预拱度影响较大,对主梁合龙阶段位移有一定影响,但对主梁应力、成桥索力影响较小,先边跨再次边跨最后中跨合龙的顺序为该桥最优合龙顺序。最终该桥采用了先边跨再次边跨最后中跨的顺序合龙,施工和成桥阶段全桥线形控制良好,结构受力安全。  相似文献   

11.
坝陵河大桥钢桁加劲梁合龙关键技术   总被引:1,自引:1,他引:0  
龚玉华  梁森  陶路 《桥梁建设》2012,42(1):96-101
为保证坝陵河大桥钢桁加劲梁架设的顺利进行,针对合龙过程中可能出现的竖向、横向、扭转偏差及跨中合龙段合龙口长度偏小,上、下弦合龙口长度偏差不同等难点,对合龙口特征、参数敏感性、各种偏差调整措施及合龙方案进行了研究.研究结果表明,采用在两桥塔处对梁端进行牵引措施可较好解决合龙口纵向长度不配匹的难点,保证钢桁梁合龙杆件安装顺利实施;采用合龙段前端吊索暂不安装并辅以临时吊索的措施,可有效解决上、下弦合龙口偏差问题,同时也可作为钢桁梁横向、扭转偏差的调整措施.  相似文献   

12.
三塔大跨度结合梁斜拉桥主跨合龙技术分析   总被引:1,自引:0,他引:1  
易炳疆 《世界桥梁》2012,40(4):54-58
三塔大跨度斜拉桥合龙时各种因素对合龙口的变位和局部受力影响较大,给合龙口调整施工带来了难度.为了得到合理的合龙施工方案,以武汉二七长江大桥为背景,利用MIDAS Civil软件建立该桥有限元计算模型,计算分析了该桥主跨非对称合龙的可行性,并通过敏感性分析确定了温度、压重、调索、对拉等对合龙口两端主梁变位及局部应力影响的程度,得出主跨合龙时应采取的合理措施及合龙步骤.  相似文献   

13.
新建京港澳高铁安九段鳊鱼洲长江大桥南汊航道桥为主跨672 m双塔双索面钢-混混合梁交叉索斜拉桥,主跨及辅助跨主梁采用钢箱梁,标准节段长18 m,重约510 t,锚跨主梁采用预应力混凝土箱梁,重约200 t/m。根据该桥结构特点及水文地质条件,主梁采用现浇支架+多点顶推+单悬臂+双悬臂等混合方案施工。锚跨预应力混凝土箱梁采用“钻孔桩+钢管立柱+贝雷梁(大桥Ⅰ号桁梁)”支架现浇方案施工。九江侧钢梁采用单悬臂+多点顶推施工技术,边跨钢梁、合龙段与结合段同步顶推,省略了九江侧边跨合龙工序;在结合段钢梁与锚跨预应力混凝土梁之间设置锁定结构,保证了结合段施工质量。黄梅侧钢梁采用轻型墩旁托架+双悬臂+单悬臂施工技术,4号墩墩顶三节段采用轻型托架滑移施工,结合段采用浮吊整体吊装,定位后浇筑结合段混凝土,预应力张拉后进行边跨合龙;黄梅侧边跨和中跨合龙段均采用主动合龙,先边跨合龙后中跨合龙。  相似文献   

14.
万华 《中外公路》2011,31(4):104-107
合龙段施工是大跨斜拉桥主梁施工的关键环节,文章以荆岳长江公路大桥超长合龙段的中跨合龙施工为例,介绍该桥主梁合龙段全新的施工技术,提出了全新的施工理念,即以精确控制合龙缝的中跨合龙思路取代以往精确控制合龙口的中跨合龙思路,取消了梁端配重和劲性骨架锁定措施,简化了施工过程,降低了合龙施工难度,优化了合龙段的长度设计,同时实...  相似文献   

15.
基于倒拆法和局部正装法,采用非线性有限元软件BNLAS对某大跨度斜拉-悬吊组合体系方案的施工过程进行模拟。分析表明,施工方案具有施工进度快、压重少(或不压重)等优点;降温合龙法适用于合龙口宽度的调整;采用局部压重、张拉斜拉索、或张拉临时吊索和局部压重相结合的方式,均可以实现对合龙口线形(高差和倾角)的调整。  相似文献   

16.
厦漳跨海大桥北汊主桥为双塔双索面钢箱梁斜拉桥,主梁采用悬臂拼装施工,中跨合龙方案采用配切-顶推合龙技术:在合龙前对合龙口进行观测,并拟合出合龙口宽度~温度曲线,根据预测的合龙口宽度对合龙段下料,同时在塔梁临时锚固上对单侧主梁顶推和回移一较小位移.实践证明,该桥采用的配切-顶推合龙技术既能确保合龙段顺利吊入合龙口,又能达到理想的焊缝宽度,提高了合龙的可靠性,降低了结构安全风险.  相似文献   

17.
杭瑞高速岳阳洞庭湖大桥是一座两跨连续钢桁架加劲梁悬索桥,施工中梁段刚接与吊装同步或滞后完成,至合龙前除个别位置临时铰未封闭外,其余已吊装梁段完成刚接,基本实现了合龙即刚接完毕的施工工艺。与传统的全铰接施工方法相比,这种施工方法在合龙段安装时要复杂得多。在洞庭湖桥施工中,提出了利用缆载吊机自身提升力实现梁段姿态动态调整的合龙段施工新思路。利用桥梁非线性分析系统Bnlas模拟桥梁合龙施工全过程,探讨了新方案的可行性。研究结果表明:洞庭湖大桥利用缆载吊机调整梁段姿态可顺利完成无应力合龙施工,且相应构件满足受力要求。相比传统压重方案,减少了压重成本,其动态调整合龙口两侧高差与倾角的优势极大限度地排除了外界因素干扰。  相似文献   

18.
泰东河大桥为主跨270 m的双塔双索面叠合梁斜拉桥,中跨合龙时采用单侧桥面吊进行吊装。中跨合龙段钢梁需提前进行配切,为实现桥梁无应力合龙,对影响合龙的关键因素进行系统分析,包括桥面吊机重量误差、体系温差等环境参数以及悬臂端施工临时荷载等因素。根据各参数影响程度,提出无应力合龙控制对策以及合龙段合理配切量的确定方法。此外,考虑到实际施工时合龙口两端存在一定误差,研究提出汽车吊移动载和拉索索力调整等快速化调控合龙口姿态的方法。研究成果可较好指导现场施工,并为同类工程提供借鉴。  相似文献   

19.
《中外公路》2021,41(3):146-150
南沙港铁路洪奇沥特大桥为主跨360 m的下承式连续钢桁梁柔性拱结构,全桥采用先梁后拱的施工顺序,主梁采用桥面吊机进行悬臂拼装施工,通过顶落主梁各支点和纵移主梁的方式消除合龙口几何位置偏差。为保证主梁顺利合龙,使用Midas有限元软件建立模型,并且考虑了温度和桥面吊机等施工临时荷载,确定了最佳的合龙方案。计算了顶落梁值、温度及桥面吊机站位等参数对合龙口线形的影响因子,便于实际施工中对合龙口进行微调。验算了各施工阶段主梁应力值与刚度,均满足要求。研究结果表明:通过顶落主梁各支点和纵移主梁的方式可以实现连续钢桁梁的高精度无应力合龙,缩短工期,降低施工成本,误差满足规范要求。  相似文献   

20.
毕都(毕节—都格)高速公路北盘江大桥中跨合龙时,根据合龙前中跨钢桁梁安装误差情况,对主桥中跨合龙特点进行分析,制定合龙口误差调整措施并进行调整措施影响敏感性分析,确定中跨合龙方案为压重调整、主梁顶推及临时锁定、局部调索、多点配切合龙,按照该合龙方案调整合龙口状态,使合龙后中轴线偏差小于2cm、中跨合龙段线形偏差小于3cm,顺利实现了中跨精确合龙。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号