首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
针对船舶轴系的纵向振动情况,研究一种嵌入式船舶推力轴承纵向液压减振器,以隔离螺旋桨脉动激励而引起的船舶轴系纵向振动。首先,建立桨轴系统的动力学模型,分析船舶推进轴系纵向减振特点;其次,提出液压减振器模型,开展动力学分析并提出动刚度计算方法;最后开展系统减振效果验证试验,结果表明推力轴承集成纵向液压减振器后可明显降低轴系纵向振动,为船舶轴系声学设计提供方法。  相似文献   

2.
介绍基于工控组态软件MCGS的船舶轴系监测系统。该系统的主要功能是实现在线监测轴系的运转状况,其原理是通过对轴系运转过程中各个轴承的受力情况、尾轴承润滑油的受压情况以及螺旋桨的受力情况的在线监测和分析比较,及时预测和发现轴系在运转中的不良状况,进而排除故障。  相似文献   

3.
在深入分析推进轴系扭振特性及其动力学理论的基础上,将在Solidworks中建立的船舶推进轴系三维实体模型导入ADAMS中形成轴系的多体动力学模型,并对该模型进行自由模态分析、动力学特性分析和轴系在不同工况下的扭振特性分析。结果表明,推进轴系在施加负载后轴系的扭转角呈周期性变化趋势,振幅较大且峰值可达0.65°。在旋转副失效的条件下,扭转角在0.9°附近波动。当轴系终端螺旋桨受到冲击时,轴系的扭转角也将产生较大幅值的波动,最大扭转角达到了4.5°左右。  相似文献   

4.
大型船舶推进轴系回旋振动特性分析研究   总被引:3,自引:0,他引:3  
在分析大型船舶推进轴系结构特点的基础上,考虑船体与推进轴系的相容性,建立了大型船舶推进轴系回旋振动的有限元模型,研究了低速转子的动力学特性及陀螺效应理论,利用有限元分析软件,分析了螺旋桨惯性力矩,即陀螺力矩(包括哥氏惯性力矩和牵连惯性力矩)、应力刚化效应及旋转软化效应等对轴系回旋振动的影响,得到一系列有价值的结论,从而验证了理论分析的正确性,能为大型船舶推进轴系设计计算提供理论指导。  相似文献   

5.
推进系统是船舶的动力源,一般由电机、螺旋桨和轴系组成,其中螺旋桨作为推进系统的重要组成部分,是船舶前进的重要动力源。螺旋桨在工作过程中会发生自身的磨损、变形、损坏等故障,进而对其他相关部分主机和轴系的工作产生影响。为了提高船舶航行安全性,对螺旋桨的故障诊断显得尤为重要。本文对基于CFD的船舶螺旋桨水动力性能进行分析,并对电力推进船舶螺旋桨故障进行诊断分析。  相似文献   

6.
王水  杨盛浩 《机电设备》2010,27(3):7-10
船舶轴系是船舶动力装置中的重要组成部分,其功能是将主机发出的功率传递给螺旋桨,再将螺旋桨产生的轴向推力传递给船体实现推船航行.轴系的安装质量直接关系到主机推进系统运转的可靠性和船舶的安全航行.通过从生产准备、轴系校准、轴承浇注、尾轴安装等方面,介绍了结合拉线法与望光法确定轴系理论中心线,使用环氧树脂浇注尾轴承,轴系安装及下水后的调整,最后通过该船型的试航情况分析证明安装质量是合格的.  相似文献   

7.
柴油主机是舰船动力推进系统中的重要组成部分,对柴油主机的曲轴轴系进行多体动力学仿真分析可以精确求解轴系的动态和静态响应,对优化船舶柴油主机的性能和结构有重要的价值。本文系统介绍多体动力学理论,建立船舶柴油机曲轴轴系的动力学分析模型,并结合有限元分析软件Ansys方法对曲轴轴系的强度进行计算和仿真分析。  相似文献   

8.
根据36000dwt多用途船主推进系统任务书和船级社要求,基于船型参数,分别运用HydroC omp软件和Ship Power软件进行船舶阻力计算及对比分析,以获取船舶阻力;基于船舶阻力,运用HydroC omp软件进行船机桨匹配初始设计,以获取主机功率及螺旋桨最佳转速;综合考虑主机功率、螺旋桨最佳转速、初始投资、油耗、质量及功率储备等因素进行主机选型分析,以确定主机型号;基于主机型号及船舶阻力,运用HydroC omp软件进行船机桨匹配终结设计,以获取螺旋桨桨径、螺旋桨平均螺距、螺旋桨盘面比及螺旋桨效率等主要参数;基于船级社规范进行轴系初步设计,以确定轴系轴径并最终完成该船方案设计研究。研究结果表明,该方案设计不仅满足设计任务书要求,还可据此确定主机型号、轴系和螺旋桨的基本参数,完成动力系统的报价,进行主机、轴系毛坯及螺旋桨等长周期零部件的订货。  相似文献   

9.
针对不平衡-碰摩耦合故障引发轴系振动的问题,采用多体系统动力学法进行理论与仿真研究。首先在螺旋桨推进轴系动力学模型的基础上,推导耦合故障作用下的多柔体系统动力学方程;然后利用SolidWorks、Adams建立螺旋桨推进轴系试验台刚柔混合模型,对模型进行仿真;最后分析耦合故障作用下轴系的振动特性。仿真研究表明:不平衡-碰摩耦合故障的发生,会使得轴系的振动变得更加复杂,特征频率出现了大量的高倍转频;转速越高,出现高倍转频的现象越明显,振动越复杂。  相似文献   

10.
运用非线性多体动力学方法,建立某抛落式救生艇在主机怠速运转时推进系统的多体动力学模型,计算分析该救生艇落水时产生的冲击载荷对其推进系统主要轴承及艉轴的动态响应。结果表明:主轴承受力明显增大,轴心偏移增加6倍;艉轴承水平方向最大受力增大263%,垂直方向最大受力增大292%;艉轴水平方向弯曲振动偏移量增加190%,螺旋桨径向位移增大147%。曲轴和艉轴最大受力均在许用范围内,且有较大安全裕度,原来的设计方案不会对入水冲击带来不安全。这项研究为自由抛落式救生艇的可靠性设计提供了重要参考。  相似文献   

11.
根据某近海拖轮的推进系统,将其轴系进行分析和简化,并利用有限元软件ANSYS建立轴系横向振动的有限元模型,并分析船舶艉轴承发生磨损的原因。如果艉轴承支撑位置安装不当以及螺旋桨激励力的影响,会使轴承负荷分配不均,引起超负荷轴承的过度磨损。而艉轴承的过度磨损则会引起其支承长度的变化,不同位置轴承支承长度的变化对轴系固有振动特性的影响也不同。  相似文献   

12.
推进轴系的合理校中直接关系到舰船推进系统运行和舰船航行的安全性与可靠性,因此,其计算方法的合理性和准确性是推进系统研究的重要内容之一。基于有限元分析,建立了舰船推进轴系合理校中计算模型,并计入了螺旋桨水动力、齿轮动态啮合力、轴承刚度、轴承变位、轴段剪切变形以及运行温度等因素对推进轴系校中的影响。以某型舰船的推进轴系为研究对象,采用所提出的方法进行了推进轴系冷态、热态以及安装状态的合理校中计算分析,并与Kamewa公司采用Shaft Analysis AB软件的计算结果进行了比对,平均计算偏差小于1.54%。  相似文献   

13.
考虑轴颈倾斜的径向滑动轴承动态特性研究   总被引:1,自引:0,他引:1  
由于螺旋桨的悬臂作用,船舶尾轴径向滑动轴承工作时轴颈在轴承孔中往往处于倾斜状态,这样尾轴承特别是后尾轴承会造成严重的磨损,因此有必要分析轴颈倾斜对径向滑动轴承润滑性能的影响,找出压力分布规律,为船舶推进轴系实现合理校中提供一定的理论依据。文中给出了考虑轴颈倾斜的油膜厚度计算公式,通过对Reynolds方程进行求解,结果表明,随着倾斜角的增大,最大油膜压力逐渐向尾部倾斜,油膜压力分布出现尖角状态,油膜合力也逐渐增大。  相似文献   

14.
柴油机是船舶动力的核心,船舶推进轴系的状态决定了机桨传动的效率.由于以接触式方法测量与计算轴功率和扭矩很不方便,因此需要更方便、更灵活的非接触式测量方法.提出一种新的基于光电技术的非接触式轴工况监测系统.两个编码盘和光电开关用来检测一定长度内轴的扭转角度,轴的扭转角度可根据计数器频率和叶片中心角,通过现场可编程门阵列(FPGA)量化,轴功率与扭矩可在计算机上显示出来.实验结果表明,该方法适用于量化轴的扭转角,去除了可能导致在线监测系统危险的冗余光纤.该监测系统的设计为船舶推进轴系的监测与故障诊断提供了一种思路.  相似文献   

15.
船舶在航行过程中,螺旋桨在不均匀的伴流场中工作产生周期性的弯曲力矩作用在螺旋桨轴上,使推进轴系在螺旋桨或转轴上旋转的横向力矩作用下,旋转轴绕其静平衡曲线产生振动,从而出现回旋振动现象,而严重的轴系回旋振动引起轴承反力的动力放大而引起船体尾部结构的振动.本文对一艘尾部结构振动严重的船舶进行了推进轴系回旋振动计算分析及实船振动测量验证,分析了推进轴系回旋振动对船体尾部结构振动影响,通过更换尾管前轴承、调整中间轴承的位置,解决了轴系回旋振动引起的船体尾部结构严重振动问题,为解决类似船体尾部振动问题分析提供参考.  相似文献   

16.
船舶柴油机转速的线性自抗扰控制   总被引:2,自引:0,他引:2  
涂环  陈辉 《船舶工程》2016,38(3):31-36
船舶柴油机推进系统包含非线性、时变参数以及柴油机-推进轴系-螺旋桨之间的强耦合作用,难以建立精确的数学模型,且易受到螺旋桨负载扰动的影响,不利于船舶柴油机转速的实时准确控制。针对此问题,将线性自抗扰控制(Linear Active Disturbance Rejection Control,LADRC)技术应用于船舶柴油机的转速控制系统。首先,基于平均值建模方法建立了某大型低速二冲程船舶柴油机的模型,并分析了转速控制中的不确定因素;然后,针对柴油机的转速控制问题设计了二阶LADRC控制器;最后,以船舶柴油机平均值模型为载体对LADRC的控制性能进行仿真测试,并与经过遗传算法优化的PI控制器进行对比。仿真结果表明,在负载扰动及模型参数改变的情况下LADRC表现出良好的控制性能,并且比PI控制具有更优的扰动抑制能力和鲁棒性。  相似文献   

17.
以载重10 000 t低速柴油机推进轴系为研究对象,创建其当量系统模型。基于系统矩阵法对推进轴系进行自由振动分析,求得扭转振动固有频率和振型。研究柴油机在全转速下的气体和往复惯性激励力矩,针对推进轴系在柴油机和螺旋桨共同激励下的频域稳态扭转振动响应特性进行计算,求得推进轴系扭转振动的主谐次、共振转速点和推进轴系各部件的应力值。结果表明,推进轴系在低阶频率振动时气缸和中间轴振幅较大,推进轴系应力远小于材料的屈服强度,船舶能够安全稳定航行,同时为推进轴系时域瞬态扭转振动研究打下基础。  相似文献   

18.
[目的]针对计入螺旋桨水动力的舰船轴系校中计算,传统方法通常容易忽略船体伴流场的影响,使得螺旋桨水动力计算的结果与真实值之间存在较大偏差,从而导致轴系校中精度下降。[方法]以某舰船长轴系为对象,建立桨-轴-船一体化有限元模型及其伴流场流域模型,利用CFD数值仿真的叠模方法计算螺旋桨水动力;采用流固耦合法将流体计算结果作用于螺旋桨表面,进行轴系校中计算,并得到螺旋桨水动力对轴系整体挠曲线及各轴承状态参数的影响规律。在此基础上,引入多目标优化算法开展轴系多目标优化校中,来解决轴系末端四套轴承间载荷差值过大的问题。[结果]考虑螺旋桨水动力后,轴系尾部挠度变化减小,越靠近螺旋桨处的轴承其载荷所受影响越大,载荷值随进速系数的增大而减小;对比多目标优化前后的轴系校中状态,轴系各轴承之间的载荷差值明显减小,轴系运行状态得到改善。[结论]所提方法提高了计入螺旋桨水动力的轴系校中计算精度,可为轴系校中质量的提升提供参考。  相似文献   

19.
电机振动为潜艇噪声的重要振源,掌握其特性对于优化艇体结构设计有着重要的意义。采用结构有限元耦合流体边界元的附加质量阻尼算法,对潜艇的2种不同位置激振的工况进行水下振动计算,并对数值计算结果进行了比较和分析。从离散频率的加速度值和功率两个层面上初步讨论了低频段内艉轴激振力与电机激振力对电机基座上加速度的影响。结果表明:在艉轴激振力比电机激振力大一个数量级的情况下,艉轴激振力对电机基座加速度的影响远小于电机激振力对其的影响,因而可以忽略。在实艇航行中,当艉轴与电机激振力同时存在的情况下,确保了电机振动特征信号测量的准确性。  相似文献   

20.
Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号