共查询到19条相似文献,搜索用时 47 毫秒
1.
通过对机车轴承振动信号的分析处理,提出基于支持向量机(SVM)的故障诊断方法,提取反映轴承运行状态的无量纲系数作为故障的特征向量,并以此作为输入来建立支持向量机分类器,利用SVM网络的智能性来判断机车轴承的工作状态和故障类型.实验结果表明,提出的方法在小样本的情况下仍能准确、有效地对机车轴承的工作状态和故障类型进行分类,实现机车轴承故障的智能诊断. 相似文献
2.
为了提高三电平逆变器复杂开路故障诊断的准确率,提出了一种应用“改进自适应噪声完备集合经验模态分解-模糊熵(ICEEMDAN-FE)”和“支持向量机(SVM)”结合的三电平逆变器故障诊断方法。首先,检测信号选取三相负载电压,为降低特征向量的维数,对三相负载电压进行Concordia变换,转换为α-β相电压;然后,通过ICEEMDAN算法提取α-β相电压的特征,得到不同尺度的内禀模态函数(IMF),再利用主成分分析(PCA)降维剔除IMF虚假分量;最后,计算优选的IMF的模糊熵均值作为特征向量,输入到多分类SVM中进行训练分类,进而实现对二极管中点箝位型(NPC)三电平逆变器的故障诊断。仿真试验结果表明,该方法能够有效识别多种开路故障模式,具有抗噪性能强,诊断速度快,诊断精度高等优点。 相似文献
3.
将采集到的数据进行模糊化处理,然后运用支持向量机对计算出的模糊样本进行训练,并对其进行模拟仿真,结果与实际试验结果基本相符.克服了根据单一的频谱变化来判断故障的类型,有效地提高了故障诊断性能. 相似文献
4.
支持向量机(SVM)是一种解决小样本分类问题的最佳理论算法,它的核函数的参数选择非常重要,直接影响着故障诊断的准确率。本文将粒子群算法(PSO)用于支持向量机的参数优化,提出基于粒子群支持向量机的故障诊断模型,并将其运用于轨道电路中。通过对比MATLAB仿真结果得出:经过粒子群寻优得到的参数比随机选取的参数更优,所建立的PSO-SVM模型的故障诊断准确率高于普通的SVM模型。 相似文献
5.
6.
7.
基于小波分析和SVM的主变流器故障诊断 总被引:1,自引:1,他引:1
针对电力机车主变流器的故障,提出基于小波分析和支持向量机(SVM)的故障诊断方法.首先,运用小波包对特征信号进行分解和重构,然后提取各频带的能量,将得到的能量值构造为特征向量,最后把特征向量输入到支持向量机,进行故障诊断.MATLAB仿真结果表明,该方法能够准确地对故障进行诊断. 相似文献
8.
9.
针对检测动车组闸片剩余厚度的需求,设计闸片图像采集系统,通过高速相机与面阵光源的结合使用完成在线闸片图像的采集。介绍支持向量机(SVM)算法的概念,采用SVM对闸片边缘特征进行识别,进而检测剩余厚度。运用最小二乘支持向量机(LSSVM),将SVM的不等式约束变为等式约束,实现闸片剩余厚度的趋势预测。通过将LSSVM检测结果与现场人工测量结果进行对比,验证方法的可靠性。基于LSSVM算法精准预测闸片磨耗趋势,可提供更好的闸片状态修管理模式。 相似文献
10.
针对使用静力测试数据进行桥梁结构损伤识别时容易出现误判的问题,基于支持向量机理论,提出1种新的静力损伤识别方法。将损伤识别过程分为损伤发生识别、损伤位置识别和损伤程度识别3个步骤。使用理论计算结果与测试数据比较的方法判断损伤是否发生,采用C-支持向量机分类算法进行损伤位置识别,利用ε-支持向量机回归算法进行损伤程度识别。将该方法与优化识别方法同时运用于1个连续梁试验中。试验结果表明:与优化识别方法相比,支持向量机方法通过分开求解损伤位置和程度,并先进行结构有限元分析,然后再使用支持向量机进行识别,将这2个过程解耦,从而降低了问题的难度,不仅能够正确地识别损伤出现的位置,而且能够得到与实际相符的损伤程度识别结果,并且具有较好的推广能力和较强的抗噪声能力,能够很好地对桥梁静力损伤进行识别。 相似文献
11.
12.
在城市轨道交通车辆受电弓日常检修过程中,大量检修及故障数据未得到合理利用.针对计划检修已不能满足目前受电弓检修要求的问题,提出了一种基于主元分析和概率神经网络结合的故障诊断方法.该方法运用主元分析法对受电弓日常检修中的初始特征参数进行降维,将降维后特征参数输入到概率神经网络模型中进行故障诊断,判定受电弓故障模式.仿真结... 相似文献
13.
《铁道工程学报》2015,(3)
研究目的:用于消除地铁隧道变形监测数据受环境等因素引起的噪声影响,为提高变形数据的外推预测能力,提出基于离散小波消噪和动态在线滑移窗的支持向量机预测方法。研究结论:(1)利用离散小波变换对地铁隧道变形数据进行消噪处理,提取低频有效工程信息;(2)引入动态滑移窗技术,通过二阶双重滑移窗口的动态调整、更新,确定隧道变形预测模型的最终参训样本和实训样本数据,提高变形数据的有效利用率;(3)利用上海地铁隧道变形数据,从稳态与非稳态两个工况下分别对预测模型进行验证,检测模型的预测效果,结果表明该方法具有消噪效果好、预测精度高等特点,同时该预测模型可转为工程化应用,对隧道预测模型的搭建具有指导意义。 相似文献
14.
由于轨道电路数据多且其维数高,这往往会导致所选特征之间存在冗余和相容性的问题。基于主分量启发式算法,引入相容度概念,并提出一种改进的主分量启发式属性约简算法,提取初始数据的主要特征属性来降低样本的维数。同时将模糊认知图概念引入到轨道电路故障诊断中,利用最小二乘法完成模糊认知图节点间权值的选择,最后根据权值建立轨道电路诊断模型并对预处理的样本进行训练和分类。实验结果表明,与单独的FCM分类器相比较,加入属性约简算法后, FCM分类器可提高分类性能,与采用人工确定权值的FCM方法对比,最小二乘法提高了FCM分类的精度。 相似文献
15.
提出了基于小波能量的机电设备状态检测及小波奇异性检测方法,分析小波变换在故障诊断中的各种应用及实现方法,使小波分析能适应不同特点的机电设备及测试信号的处理要求,该系统在机电设备故障诊断中得到很好的应用. 相似文献
16.
提出了一种基于误差相关性的弓网系统模型,采用最小二乘支持向量机(LSSVM)方法对模型的参数进行研究探讨,并对误差相关性系数进行分析,最后利用既有线的弓网实际检测试验数据对弓网接触压力值进行仿真分析。结果表明:基于最小二乘支持向量机的弓网模型能够描述接触压力的动力学行为,具有较高的预报精度。 相似文献
17.
基于最小二乘支持向量机的高速铁路路基沉降预测 总被引:1,自引:0,他引:1
高速铁路路基的施工环境复杂,沉降监测数据往往是不等时距的.鉴于最小二乘支持向量机拥有强大的非线性拟合能力,使用最小二乘支持向量机建立沉降与时间的关系函数,以等时间步长插值得到路基的等时距沉降时间序列,建立基于最小二乘支持向量机的高速铁路路基沉降预测模型.分别运用给出的预测模型和BP神经网络与灰色理论联合方法对杭甬铁路客运专线上虞北站5个路基沉降监测断面进行路基沉降预测,并与现场实测数据对比.结果表明,短时距的最小二乘支持向量机预测模型比BP神经网络与灰色理论联合方法的预测精度高,预测结果更稳定,外推预测沉降更可靠. 相似文献
18.
19.
《郑州铁路职业技术学院学报》2022,(1):22-25
对于铁路客运量预测的准确度问题,本研究提出了基于粒子群(PSO)优化最小二乘支持向量机(LS-SVM)重要参数的方法。以1995—2013年的铁路客运量历史数据作为训练集,2014—2018年的客运量作为测试集,用LS-SVM进行建模和预测。针对模型中参数难以选择问题,采用PSO全局搜索方法,与神经网络和LS-SVM的预测效果作比较,仿真表明,采用PSO优化LS-SVM对铁路客运量建模与预测效果更好,精度更高。 相似文献