首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The East Sea (Sea of Japan) is a unique marginal sea because it exhibits features of oceanic dynamics of much larger ocean basins. This semi-enclosed basin may be considered as a model or microcosm for understanding of how biological processes and distributions in pelagic ecosystem are interacting with physical processes in highly dynamic ocean regions. This overview summarizes the recent progresses concerning spatial and temporal variability of pelagic ecosystem components form an interdisciplinary point of view. Spatial characteristics of physical environments and biogeography in the region are distinguished mainly by the subpolar front. It was also found that long-term changes in biomass and community structure as well as those in the physical and biological environments are associated with climate variability in the region. We conclude by identifying main needs for the information and researches, particularly regular and long-term sampling, and permanent monitoring if possible.  相似文献   

2.
A new coupled ice–ocean ecosystem model that links the pelagic and ice ecosystems was used to clarify the role of ice algae in ice-covered ocean ecosystems. The model was applied to Lake Saroma (Hokkaido, Japan) in 1992. Comparison of the model's results with observational data confirmed that the model reproduced the behavior of the ecosystem with acceptable accuracy during the period from winter to spring. The primary production of the ice algae is effectively transported into the pelagic system by means of physical releasing effects: brine convection, ice melting and freezing, and diffusion generated at the bottom of the ice. Ice algae released from the ice are rapidly exported because of their high sinking speed and the shallow depth of Lake Saroma. For this reason, the zooplankton in Lake Saroma cannot graze these released algae. However, zooplankton actively graze the ice algae living along the bottom of the ice. These results show that, before their release, ice algae play an important role as a food source for overwintering zooplankton. A sensitivity analysis revealed a positive correlation between the sinking speed of the released ice algae and the magnitude of the spring bloom by pelagic phytoplankton, and that the time when secondary production becomes active is an important factor in the linkage between these two algal populations.  相似文献   

3.
A one-dimensional coupled physical–biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of Liège. The ecosystem model contains 19 state variables describing the carbon and nitrogen cycles of the pelagic food web. Phytoplankton and zooplankton are both divided in three size-based compartments and the model includes an explicit representation of the microbial loop including bacteria, dissolved organic matter, nano-, and microzooplankton. The internal carbon/nitrogen ratio is assumed variable for phytoplankton and detritus, and constant for zooplankton and bacteria. Silicate is considered as a potential limiting nutrient of phytoplankton's growth. The aggregation model described by Kriest and Evans in (Proc. Ind. Acad. Sci., Earth Planet. Sci. 109 (4) (2000) 453) is used to evaluate the sinking rate of particulate detritus. The model is forced at the air–sea interface by meteorological data coming from the “Côte d'Azur” Meteorological Buoy. The dynamics of atmospheric fluxes in the Mediterranean Sea (DYFAMED) time-series data obtained during the year 2000 are used to calibrate and validate the biological model. The comparison of model results within in situ DYFAMED data shows that although some processes are not represented by the model, such as horizontal and vertical advections, model results are overall in agreement with observations and differences observed can be explained with environmental conditions.  相似文献   

4.
Data on hydrography, phyto- and zooplankton, obtained on a transect along the 0° meridian during the Winter Weddell Gyre Study, June 1992, revealed peculiarities of the early winter situation in the eastern Weddell Gyre. The vertical distribution and developmental stage composition of Rhincalanus gigas, Calanoides acutus, Calanus propinquus and krill, Euphausia superba larvae, were a good index for a general assessment of the seasonal condition of the plankton communities. There were five zones differing in seasonal situation: (1) The Polar Front and the southern ACC (not studied in detail), (2) The Weddell Front, (3) The Weddell Gyre interior, (4) The Maud Rise area, and (5) The Coastal Current zone. In the Weddell Front, the planktonic community resembled an autumnal situation with moderate phytoplankton biomass; the overwintering stock of copepods was not completely formed and the occurrence of calyptopes larvae of E. superba indicated that krill continued to reproduce until May. In the Weddell Gyre interior, a typical winter plankton community was found even before sea ice had formed. The specific hydrographic regime of the Maud Rise (governed by the mesoscale circulation over the seamount) support the late autumn conditions similar to the Weddell Front (but without early krill larvae). The plankton of the Coastal Current was a winter community. We conclude that in the eastern part of the Weddell Front (compared to the western part) seasonal development of both phytoplankton and herbivorous zooplankton is delayed in spring but prolonged in late autumn. Furthermore, it appears that the Weddell Sea ecosystem exhibits a much higher degree of spatial and temporal variability than thought before. This may have an impact on seasonal pattern of organic carbon transport from the pelagic realm to deeper water layers and to the sediment.  相似文献   

5.
This study formed part of the Northeast Water project (NEW project) which dealt with physical, geophysical and biological processes in the Northeast Water Polynya off Northeast Greenland. This was part of the International Arctic Polynya Programme (IAPP). The diatom composition of the water masses, sea ice and melt ponds was analysed to show the relationship between ice and the water column near the ice with regard to the origin and fate of the cells in the ice and melt ponds. Fragilariopsis oceanica, Fragiliria sp. I and Chaetoceros socialis usually dominated the phytoplankton, while the ice and melt pond samples showed a wide range of assemblages, with different single-celled pennates and two undescribed species, Navicula sp. 1 and Nitzschia sp. 1 often dominant. Planktonic algae in sea ice can be released into the water column during ice break-up and melt, thus contributing to the spring bloom in the water column, if the timing of the release and the species composition are correct. The number of different ice algal assemblages supports the theory that cells originated from the water column, the benthos and freshwater. In addition, differential growth in the sea ice or melt ponds often altered the relative abundance of species in comparison with what is usually found in their original habitat. However, many of the cells in the ice and melt ponds were dead (empty frustules), making it difficult to determine whether the cells had actually lived in these habitats.  相似文献   

6.
The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.  相似文献   

7.
Three different versions of a baroclinic three-dimensional circulation model of the North Sea are used to obtain information on the wind and density interactions in the North Sea ROFIs (Regions Of Freshwater Influence): the standard version with fully prognostic treatment of salinity and temperature is compared to a barotropic model run on the same grid on the one hand and to an also fully prognostic model run on a four times coarser grid on the other hand. In order to gain knowledge on the wind and density interactions, two opposing wind directions are chosen for investigation, namely a time of strong north wind, 21st–28th April 1982, and a time of strong southwest wind, 22nd–24th May 1982. In the April case the effect of the salinity gradients on the border of the ROFIs of Rhine, Weser, Ems and Elbe, i.e. along the continental shore, is shown to lead to a clear enhancement of the mean surface currents. In May this result is partly disguised by the additional effect of the thermocline in the deeper parts of the North Sea, i.e. in the classical shelf sea regime region. Nevertheless, the same pattern of enhanced mean surface currents along the coast is detected and is of the same order of magnitude as in the April case. It is thus concluded that although the circulation in the North Sea is reversed by the wind, the density induced component of the general circulation is modified only slightly.  相似文献   

8.
We present a coupled sea ice–ocean-biological (including ice algae) model in the Arctic Ocean. The 1D model was developed and implemented on the Canadian Beaufort Sea shelf to examine the importance of different physical processes in controlling the timing and magnitude of primary production and biogenic particle export over an annual cycle (1987). Our results show that the snow and sea ice cover melt and/or break-up controls the timing of the phytoplankton bloom but primary producers (ice algae and phytoplankton) on the outer shelf are essentially nutrient limited. The total annual primary production (22.7 to 27.7 g-C m? 2) is thus controlled by nutrient “pre-conditioning” in the previous fall and winter and by the depth of wind mixing that is controlled in part by the supply of fresh water at the end of spring (ice melt or runoff). The spring bloom represents about 40% of the total annual primary production and occurs in a period of the year when sampling is often lacking. Time interpolation of observed values to obtain total annual primary production, as done in many studies, was shown to lead to an underestimation of the actual production. Our simulated ratios of export to primary production vary between 0.42 and 0.44.  相似文献   

9.
This paper explores the relationships between the spatial patterns of the distribution of the young hakes of the year (YOY) and the oceanographical features in two areas of the Central Mediterranean (the Ligurian Sea and the Strait of Sicily), characterised by the occurrence of straits and channels. Comparative and correlative approaches were used to investigate coupling between biological and physical patterns. Density indices of the YOY were derived from annual trawl surveys from 1994 to 2004 in spring and autumn. Mean patterns of the YOY distributions were compared with the mesoscale oceanographical features reported in literature. No evident trends in recruitment strength were found in either areas. Inter-annual variability in YOY abundance in the Ligurian Sea was higher than in the Strait of Sicily. The location of nursery grounds in the study areas coincides with zones of relatively higher production, where upwelling and other enrichment processes regularly occur. The presence of predictable eddies and the frontal systems play a major role in the localization of nursery areas in the Strait of Sicily, maintaining their stable position throughout the years. The strongest transport of southern waters from the Tyrrhenian to the Ligurian Sea, due to the East Corsica Current, which is negatively correlated to winter North Atlantic Oscillation, is associated with the highest abundance of hake recruits in the nurseries of the Northern Ligurian Sea.  相似文献   

10.
Sea surface temperature fields of the North Sea and Baltic Sea have been constructed for the year 2001 using a multiplatform Optimal Interpolation scheme. The analyzed fields are constructed every 12 h on a 10 km spatial grid. The product is based upon observations from the three NOAA satellites 12, 14 and 16 together with a large amount of in situ observations. Space dependent covariance functions are estimated from the satellite observations and account for spatial and temporal lags. Several independent methods have been used to assess the error on the sea surface temperature product. Compared against independent in situ observations, the mean RMS difference for the year 2001 is 0.78 °C. The spatial distribution of the errors reveals that the Baltic Sea in general show higher errors than the North Sea. The error statistics throughout the year show a temporal variation of the errors with maximum during summer and winter. Tests with a varying number of satellite observations show that the accuracy of the satellite observations is the most important parameter in terms of reducing the errors on the interpolated sea surface temperature product.  相似文献   

11.
海洋环境要素区划技术研究   总被引:1,自引:0,他引:1  
王晓玢  孙尧  郝燕玲 《中国航海》2006,(4):23-25,65
将中国近海现有海洋环境要素的观测数据有机地融合起来进行区域划分,对实现传统导航信息与海洋环境辅助信息合理地结合,提高船舶航行的安全性有重要的意义。以对船舶航行影响最大的海流要素为例,采用主因子分析的方法将24个量测指标综合成4个主因子,既简化运算又不失真地反映真实海况。通过方差最大正交旋转对荷载矩阵进行处理使其列向量两极分化,以分析影响各个主因子的主要指标。最后,利用4个主因子在各采样点的得分数将中国东海、南海划分为六个区域。此结果弥补了物理海洋学方法对海洋环境要素小尺度预报精度的不足,为船舶航行提供全域背景和信息决策指导。  相似文献   

12.
A modelling system for coupled physical–biogeochemical simulations in the water column is presented here. The physical model component allows for a number of different statistical turbulence closure schemes, ranging from simple algebraic closures to two-equation turbulence models with algebraic second-moment closures. The biogeochemical module consists of models which are based on a number of state variables represented by their ensemble averaged concentrations. Specific biogeochemical models may range from simple NPZ (nutrient–phytoplankton–zooplankton) to complex ecosystem models. Recently developed modified Patankar solvers for ordinary differential equations allow for stable discretisations of the production and destruction terms guaranteeing conservative and non-negative solutions. The increased stability of these new solvers over explicit solvers is demonstrated for a plankton spring bloom simulation. The model system is applied to marine ecosystem dynamics the Northern North Sea and the Central Gotland Sea. Two different biogeochemical models are applied, a conservative nitrogen-based model to the North Sea, and a more complex model including an oxygen equation to the Baltic Sea, allowing for the reproduction of chemical processes under anoxic conditions. For both applications, earlier model results obtained with slightly different model setups could be basically reproduced. It became however clear that the choice for ecosystem model parameters such as maximum phytoplankton growth rates does strongly depend on the physical model parameters (such as turbulence closure models or external forcing).  相似文献   

13.
In the scope of the Inner SHelf Transfer And Recycling Program, extensive oceanographic surveys were conducted in the Northern Bering and Southern Chukchi Seas. A vast amount of hydrographic, chemical and biological data were collected in order to increase the information available on the system and to test if biological observations are indeed compatible with the dominant hydrographic regimes. An original model, based on the variational inverse method, was developed with the aim of reconstructing realistic three-dimensional fields of the variables of interest and giving an interpretation of the observations consistent with the physics of the general circulation. The basic formulation of the model is quite general and provides a very helpful tool in the context of interdisciplinary studies. In a first stage, the vertical and horizontal structures of physical variables are reproduced and discussed. Secondly, a sketch is proposed to explain the driving mechanisms of the primary productivity in the Northern Bering Sea. In particular, one shows that the hydrodynamic regimes strongly condition the behaviour of the ecosystem and are mainly responsible for the very fertile environment that characterizes the Southern Chukchi Sea.  相似文献   

14.
The classic view of the Antarctic pelagic system has suggested that food web dynamics are dominated by the diatom-krill food web link. Recent observations, however, have indicated that this is an oversimplification and that the antarctic food web has a complexity similar to that found in lower latitude systems. More specifically, small particulate feeding protozoans appear to have a much greater importance than was previously assumed.Only a few studies have been sufficiently extensive to characterize the Antarctic pelagic protozoan assemblage. These indicate that heterotrophic flagellates (dinoflagellates and other heterotrophic nanoplankton) and ciliates (mostly non-loricate oligotrichs) dominate the protozooplankton assemblages in surface waters. The combined biomass of protozooplankton has been reported to comprise from < 7 to > 75% of the total nano- and microplankton biomass depending on season and location. Protozoans are also found in sea ice communities where their abundances exceed those typically found in the plankton. Several protozoan species occupy both ice and water habitats, suggesting that seasonally melting sea ice may be the source of ice-edge protozooplankton assemblages.The feeding rates of protozooplankton in Antarctic waters are poorly documented. Consumption estimates based on clearance rates and some preliminary grazing experiments, however, indicate that the protozooplankton should be capable of utilizing a significant proportion of the daily primary and bacterioplankton production. Protozoans may contribute to vertical flux, but present evidence suggests that their contribution will be lower than from other sources.  相似文献   

15.
A Pacific basin-wide physical–biogeochemical model has been used to investigate the seasonal and interannual variation of physical and biological fields with analyses focusing on the Sea of Japan/East Sea (JES). The physical model is based on the Regional Ocean Model System (ROMS), and the biogeochemical model is based on the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSiNE) model. The coupled ROMS–CoSiNE model is forced with the daily air–sea fluxes derived from the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis for the period of 1994 to 2001, and the model results are used to evaluate climate impact on nutrient transport in Mixed Layer Depth (MLD) and phytoplankton spring bloom dynamics in the JES.The model reproduces several key features of sea surface temperature (SST) and surface currents, which are consistent with the previous modeling and observational results in the JES. The calculated volume transports through the three major straits show that the Korea Strait (KS) dominates the inflow to the JES with 2.46 Sv annually, and the Tsugaru Strait (TS) and the Soya Strait (SS) are major outflows with 1.85 Sv and 0.64 Sv, respectively. Domain-averaged phytoplankton biomass in the JES reaches its spring peak 1.8 mmol N m− 3 in May and shows a relatively weak autumn increase in November. Strong summer stratification and intense consumption of nitrate by phytoplankton during the spring result in very low nitrate concentration at the upper layer, which limits phytoplankton growth in the JES during the summer. On the other hand, the higher grazer abundance likely contributes to the strong suppression of phytoplankton biomass after the spring bloom in the JES. The model results show strong interannual variability of SST, nutrients, and phytoplankton biomass with sudden changes in 1998, which correspond to large-scale changes of the Pacific Decadal Oscillation (PDO). Regional comparisons of interannual variations in springtime were made for the southern and northern JES. Variations of nutrients and phytoplankton biomass related to the PDO warm/cold phase changes were detected in both the southern and northern JES, and there were regional differences with respect to the mechanisms and timing. During the warm PDO, the nutrients integrated in the MLD increased in the south and decreased in the north in winter. Conversely, during the cold PDO, the nutrients integrated in the MLD decreased in the south and increased in the north. Wind divergence/convergence likely drives the differences in the southern and northern regions when northerly and northwesterly monsoon dominates in winter in the JES. Subjected to the nutrient change, the growth of phytoplankton biomass appears to be limited neither by nutrient nor by light consistently both in the southern and northern regions. Namely, the JES is at the transition zone of the lower trophic-level ecosystem between light-limited and nutrient-limited zones.  相似文献   

16.
Hydrographic surveys in three consecutive seasons in the Irminger Sea in 2001/2002 have revealed six physical regimes (zones) in which different surface mixing and spring re-stratification processes dominate. They are the South Irminger Current, the North Irminger Current, the Central Irminger Sea, the Polar-origin East Greenland Current, the Atlantic-origin East Greenland Current and the Reykjanes Ridge. The variations in restratification processes in particular have significant implications for the timing of shallow spring mixed layer development and therefore the timing and strength of the spring bloom. The relative roles of heat and freshwater in controlling re-stratification are examined for each hydrographic zone, and it is shown that the simplest concept of solar warming generating spring stratification is appropriate for the Irminger Current and the central Irminger Sea. However in the East Greenland Current and the Reykjanes Ridge zones, the springtime arrival of fresh or saline water at the surface dominates re-stratification and generates the earliest and strongest spring blooms of the region. In the cool fresh centre of the Irminger Sea the relatively low chlorophyll-a throughout the year cannot be wholly explained by stratification or nutrient concentrations. Details of the annual cycle in temperature, salinity, chlorophyll-a and nutrients are presented for each hydrographic zone.  相似文献   

17.
The effects of variability in environmental conditions on species composition in benthic ecosystems are well established, but relatively little is known about how environmental variability relates to ecosystem functioning. Benthic invertebrate assemblages are heavily involved in the maintenance of ecological processes and investigation of the biological characteristics (traits) expressed in these assemblages can provide information about some aspects of functioning. The aim of this study was to establish and explore relationships between environmental variability and biological traits expressed in megafauna assemblages in two UK regions. Patterns of trait composition were matched to environmental conditions and subsets of variables best describing these patterns determined. The nature of the relationships were subsequently examined at two separate scales, both between and within the regions studied. Over the whole area, some traits related to size, longevity, reproduction, mobility, flexibility, feeding method, sociability and living habit were negatively correlated with salinity, sea surface temperature, annual temperature range and the level of fishing effort, and positively associated with fish taxon richness and shell content of the substratum. Between the two regions, reductions in temperature range and shell content were associated with infrequent relative occurrences of short-lived, moderately mobile, flexible, solitary, opportunistic, permanent-burrow dwelling fauna and those exhibiting reproductive strategies based on benthic development. Relationships between some traits and environmental conditions diverged within the two regions, with increases in fishing effort and shell content of the substratum being associated with low frequencies of occurrence of moderately mobile and moderately to highly flexible fauna within one region, but high frequencies in the other. These changes in trait composition have implications for ecosystem processes, with, for example, reductions in permanent-burrow dwellers within one of the regions potentially compromising the ability of the assemblages to process and store chemicals and waste products. However, the connections between environmental conditions and trait composition are complex and incorporate many factors. Experimental investigations will be necessary to determine the extent and consequences of these important relationships.  相似文献   

18.
Data from a mooring line deployed midway between the Alboran Island and Cape Tres Forcas are used to study the time variability of the Alboran Sea from May 1997 to May 1998. The upper layer salinity and zonal velocity present annual and semiannual cycles characterised by a minimum in spring and autumn and a maximum in summer and winter. Temperature has the opposite behaviour to that of salinity indicating changes in the presence of the Atlantic water within the Alboran Passage. A large set of SST images is used to study these cycles. The decrease of salinity and velocity in our mooring location in spring and autumn seems to be related to the eastward drifting of the Western Alboran Gyre (WAG). The increase of salinity and velocity is caused by the Atlantic current flowing south of the Alboran Island and its associated thermohaline front. Conductivity–temperature–depth (CTD) data from two cruises along the 3°W are coherent with current meters and SST interpretations.During the period analysed, summer months are characterised by the stability of the two-gyre system, while in winter, the circulation is characterised by a coastal jet flowing close to the African shore. We use sea level differences across the Strait of Gibraltar for studying the variability of the Atlantic inflow. We discuss the changes in the Alboran Sea circulation and its relation with the variability of the inertial radius of the Atlantic inflow. Though our results are speculative, we find a possible relation between the disappearance of the two-gyre system and a reversal of the circulation in Gibraltar. Longer time series are needed to conclude, but comparison with previous works makes us think that the seasonal cycle described from May 1997 to May 1998 could be the most likely one for the Alboran Sea upper layer.  相似文献   

19.
This paper outlines an approach to couple a structured zooplankton population model with state variables for eggs, nauplii, two copepodites stages and adults adapted to Pseudocalanus elongatus into the complex marine ecosystem model ECOHAM2 with 13 state variables resolving the carbon and nitrogen cycle. Different temperature and food scenarios derived from laboratory culture studies were examined to improve the process parameterisation for copepod stage dependent development processes. To study annual cycles under realistic weather and hydrographic conditions, the coupled ecosystem–zooplankton model is applied to a water column in the northern North Sea. The main ecosystem state variables were validated against observed monthly mean values. Then vertical profiles of selected state variables were compared to the physical forcing to study differences between zooplankton as one biomass state variable or partitioned into five population state variables. Simulated generation times are more affected by temperature than food conditions except during the spring phytoplankton bloom. Up to six generations within the annual cycle can be discerned in the simulation.  相似文献   

20.
The optimal spectral decomposition (OSD) method is used to reconstruct seasonal variability of the Black Sea horizontally averaged chlorophyll-a concentration from data collected during the NATO SfP-971818 Black Sea Project in 1980–1995. During the reconstruction, quality control is conducted to reduce errors caused by measurement accuracy, sampling strategy, and irregular data distribution in space and time. A bi-modal structure with winter/spring (February–March) and fall (September–October) blooms is uniquely detected and accurately documented. The chlorophyll-a enriched zone rises to 15 m depth in winter and June, and deepens to 40 m in April and 35 m in August. The June rise of the chlorophyll-a enriched zone is accompanying by near-continuous reduction of upper layer maximum chlorophyll-a concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号