首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于刚体多体动力学理论,考虑含牵引电机与齿轮传动系统的动力传递系统的功能与特点,建立某型HX重载电力机车三维动力学模型。同时,推导了该型采用抱轴式对称布置牵引传动装置的重载电力机车的轴重转移理论解析计算公式,计算获得了准静态工况下该型重载电力机车轴重转移结果。通过对比两种方法计算结果表明,解析计算公式能够比较准确地获得2(B_0-B_0)轴式机车抱轴式对称布置牵引传动装置的轴重转移结果;此外,在考虑齿轮传动系统的影响后,机车多体动力学模型与理论解析方法计算结果吻合较好,能够反映实际运行过程中机车的动态轴重转移情况。  相似文献   

2.
30t轴重货车速度匹配及其轮径选择研究   总被引:2,自引:2,他引:0  
轴重对轮轨作用力及车辆的动力学性能有显著的影响.分析研究了不同轴重货车的动力学性能,得出了轴重增加使轮轨作用力增加的结论.得出了与30t轴重货车相匹配的较佳运行速度值,并得到了比较适宜的车轮直径选择数值.  相似文献   

3.
机车轴重转移的动力学仿真   总被引:2,自引:0,他引:2  
使用空间耦合的机车动力学仿真模型,对机车的轴重转移现象进行了动力学仿真。阐述了机车二系纵向剪切刚度和机车加速度对轴重转移的影响,揭示了驱制单元车体半悬挂机车轴重转移的新特点。  相似文献   

4.
通过对27 t轴重货车的动力学试验数据进行研究,分析轴重、工况和速度对动载荷的影响。  相似文献   

5.
根据悬浮电磁铁产生的悬浮力为分布力这一特性,建立了多力元模拟单悬浮电磁铁线圈悬浮力的磁浮车辆垂向动力学模型,利用SIMPACK多体动力学软件建立了单力元、三力元、五力元模拟单悬浮电磁铁线圈悬浮力的磁浮车辆动力学模型,分析比较了多力元模拟悬浮电磁铁线圈悬浮力和实际悬浮力之间的差异,并且在不同波长轨道高低不平顺激励下进行了仿真计算,利用计算结果分析了不同波长的轨道垂向激励对磁浮车辆系统动力学指标的影响规律,得到了磁浮车辆对不同波长的轨道垂向激励动力响应的基本规律,证明了单力元模拟悬浮电磁铁线圈悬浮力的磁浮车辆动力学模型在轨道短波激励仿真计算中的局限性。  相似文献   

6.
强烈的横风荷载会影响磁浮列车横向稳定性和安全.为全面了解横风荷载下电磁悬浮(EMS)型磁浮车辆的动态响应特性,建立了一个精细化的3D磁浮车辆多体动力学模型,并利用CFD(计算流体运动学)方法获得了磁浮车辆的气动载荷系数.基于"中国帽子风"阵风风速曲线计算生成横风荷载,进而通过时域动力学仿真,最终获得磁浮车辆车体与悬浮架的动态响应,并从车体位移、电磁悬浮系统和关键部件等方面细致全面地分析了横风荷载下EMS型磁浮车辆动态响应特性.  相似文献   

7.
不同轴重货物列车编组方案的计算分析   总被引:1,自引:0,他引:1  
通过列车纵向动力学仿真软件,建立27t轴重通用货物与23t和21t轴重车辆混编的纵向动力学模型。通过仿真分析得到27t轴重及以下通用货物列车以各种轴重混编、空重混编在一定的线路条件下进行紧急制动时的纵向力分布规律,对列车的编组方式进行对比分析,提出不同轴重货物列车合理的编组方式。  相似文献   

8.
惠汝海  陈斌 《铁道建筑》2020,(2):14-17,39
针对现有规范对铁路桥梁的振动加速度限值不适用于大跨度高速铁路桥梁的情况,本文通过分析南京大胜关长江大桥桥梁结构健康监测系统长期监测得到的桥梁结构响应数据,研究列车过桥工况下主梁振动加速度峰值的变化规律,并与车速、轴重进行相关性分析。研究结果表明:在单一列车过桥工况下,主梁加速度峰值集中在固定的变化区间,且服从正态分布;桥梁振动加速度峰值与车速不存在线性相关性,与列车轴重存在线性相关性;动应变响应有叠加交汇工况下,加速度峰值约为单一列车过桥工况的1.4倍;现有运营条件下,大胜关桥梁振动加速度响应正常,能保证列车的行车安全。  相似文献   

9.
综述了重载铁路轮轨磨耗的严重性及引起轮轨磨耗的主要原因,分析了几种评价轮轨磨耗的数学模型与指标,并对其进行了综合比较。最后,在SIMPACK系统动力学仿真软件中建立两种不同轴重的货车模型,运用Archard磨耗模型,计算此两种不同轴重的重车车轮在不同工况下的磨耗量,并对其对比分析。  相似文献   

10.
以GCY300II型轨道车12 t轴重车轴为研究对象,采用机车车轴的强度标准,利用有限元计算方法计算车轴不同轴重下的6种不同工况的静强度和疲劳强度,在获得对应工况的应力分布及数值的基础上,进行车轴的静强度和疲劳强度分析,并确定车轴薄弱部位,然后假定车轴最薄弱部位出现疲劳裂纹,将不同轴重、不同工况下计算得到的应力数值作为车轴裂纹处的载荷应力谱,再结合疲劳断裂分析理论计算分析车轴疲劳裂纹扩展寿命。计算结果表明:车轴薄弱部位为车轴变截面处,其中最薄弱部位为车轮内侧轮座处上边缘。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号