首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
某型轨道车辆永磁牵引电机在型式试验中噪声超标,产品声学性能不能满足要求。针对这一现象,文章开展了电机声学测试,分析其声学特性,并结合噪声机理确定了主要噪声来源。在此基础上,根据该型电机的结构特点,提出了声学控制优化方案,并对优化方案进行了声学仿真计算和试验验证。结果表明,该优化方案能明显改善电机噪声水平。  相似文献   

2.
借助CAD/CAE仿真软件分别建立无内装地铁A型车声学有限元模型与含内装地铁A型车声学有限元模型.利用多体动力学软件分析获得车体频域激励载荷并加载在车体上,计算车体在模拟运行时的频率响应.以车体板件频率响应位移振动结果作为声学激励,计算车内噪声分布.通过对两者的结果进行对比,研究分析内装结构对车内噪声的影响.  相似文献   

3.
从结构振动和声学原理出发,对动车组车体型材的声学特性进行优化,在现有型材厚度基本不变的前提下,通过改变斜筋角度、斜筋厚度、上下层板厚度等设计变量,提出车体双层铝合金加筋结构的隔声特性优化方案,主要以地板型材为例进行介绍。在此基础上对该动车组一中间车建立SEA声学模型,通过车体声学仿真计算,预测车内的噪声环境,验证上述优化方案的有效性。  相似文献   

4.
通过对70%低地板车辆进行动力学建模,仿真得出车辆正常运行时二系结构与车体连接处的力和两处下铰力,以此作为激励对车体结构有限元模型进行频率响应计算。用计算得到的车体位移激励车体声学有限元模型,得到车内声学模态、声场分布和ISO标准场点响应。结果显示,车体在几个特定频率下的声压级超出了车内噪声指标。通过对几个特定频率下的各板件声场贡献量计算,得到车顶正贡献量较大,可提供给厂方进行结构优化。同时,根据结构模态、声学模态计算结果对车体下吊设备频率提出了建议。  相似文献   

5.
某机车现场运行时机械间变压器电磁噪声突显,产生刺耳的啸叫声,严重影响听觉。针对这一现象,开展了变压器现场和车间电磁噪声声学测试,了解其声学特性,在此基础上结合变压器实际安装情况及声传播特性,提出了声学包装优化方案,并对优化方案进行了声学仿真计算和试验验证。结果表明,优化方案能明显改善现场变压器电磁噪声水平,提高值乘舒适性,且成本较低。  相似文献   

6.
某型高速动车组现场运行时牵引变流器噪声突显,产生刺耳的啸叫声,严重影响乘车人员舒适性。针对这一现象,开展了变流器现场和车间噪声声学测试,了解其声学特性,确定啸叫声来源;在此基础上结合变流器结构及声传播特性,提出了声学控制优化方案,并对优化方案进行了声学仿真计算和试验验证。结果表明,优化方案能明显改善现场变流器噪声水平,提高乘坐舒适性。  相似文献   

7.
钢轨探伤车依靠多通道超声波B显数据进行伤损的综合判定。有缝线路的接头位置是伤损高发区域,但接头处固定反射波和伤损波易于混淆,尤其是中心70°通道在接缝处的不明反射波容易导致误判和漏判。基于60 kg/m钢轨接头处的钢轨探伤车B显数据,采用声学计算推算出中心70°通道的不明反射波为1孔侧上方的纵波回波,并利用Imagine3D超声仿真软件开展了仿真计算,验证了声学计算的正确性。结合1处自然伤损,分析该处中心70°通道不明反射点群的异常,进行了伤损综合判定。  相似文献   

8.
重载电力机车司机室声振特性分析   总被引:3,自引:2,他引:1  
基于一重载电力机车司机室的详细结构有限元模型,对其结构模态进行了计算和分析,应用声学有限元法对室内空腔声学模态、轮轨垂向随机激励下的室内声压、室内测试场点处6.3~200 Hz频率范围内的声压频率响应进行了仿真计算。结果表明:司机室结构的局部模态频率比较密集,且主要在80 Hz以下的低频段;现有司机室空腔声学模态的零声压节线在较大范围内使人耳处于声压幅值较小的区域;在运行速度100 km/h,轮轨垂向随机激励下,空腔声学模态的节线位置发生了稍许偏移;阻尼和吸声材料使室内100~200 Hz频段内的噪声特性有明显的改善。  相似文献   

9.
高速列车结构振动噪声预测与降噪技术研究   总被引:2,自引:0,他引:2  
基于有限元法和边界元法以及声传递向量,运用ANSYS软件和SYSNOISE软件研究高速列车车体的结构模态与室内声腔声学模态,仿真分析高速列车结构-声场耦合系统的低频噪声,并对铺设吸声材料和涂敷阻尼材料的车身部件进行声学贡献分析,为高速列车的减振降噪提供理论依据.对某高速列车拖车的仿真分析结果表明:该车声学测试点的总声压级超出了TB 1809-86标准拖车客室的容许噪声值;在某些计算频率下,车体某些部件涂敷阻尼材料后对客室测试点的声学贡献由小变大,这说明阻尼材料不仅改变了这些部件的振动幅值,同时也改变了振动相位.因此,在采用阻尼材料减振降噪时,应对车体板件进行声学贡献分析,充分考虑阻尼材料对测试点声压级的影响,有针对性地采取措施,降低乘客室内噪声.  相似文献   

10.
理论计算了不锈钢城轨车辆薄板结构的振动及声辐射,通过仿真软件计算了加筋和附加阻尼后的薄板结构辐射声功率,通过加筋薄板声学试验,验证了计算和分析结果的准确性.  相似文献   

11.
随着我国铁路实现提速、兴建准高速铁路以及拟议中的高速铁路的兴建,列车噪声控制问题日益重要。结合铁路声屏障声学设计中的重点内容,本文主要讨论了绕射衰减量的几种计算方法以及声屏障的声学设计原则  相似文献   

12.
袁莉  张健 《中国铁路》2014,(6):44-47
针对既有铁路客运站房声场存在问题进行分析,介绍在设计前期采用声学仿真软件对广播系统方案进行比选,从而提高铁路站房广播系统的语音质量。  相似文献   

13.
为解决高频大功率电抗器声学包电磁噪声过大这一共性问题,以某地铁能馈装置电抗器声学包为研究对象,对其振动噪声进行了系统试验;结合仿真对电抗器声学包振动噪声源和传递路径特性进行了详细的分析。结果表明:电抗器铁心磁致伸缩导致的高频结构振动辐射噪声是声学包的主要声源;电抗器柜百叶窗为主要的声传播路径,其声能比重高达80.14%。最后根据电抗器声学包的声源特性和声传播特性,制定了针对性的吸隔声优化方案,其综合降噪效果达8 dB(A)以上。研究结果对明晰高频电抗器振动噪声特性和电抗器柜声学包的优化设计有借鉴意义。  相似文献   

14.
列车噪声影响车内乘客舒适性,其产生原理复杂,在一定程度上影响着轨道交通车辆的发展,开展列车噪声研究意义重大。文章采用数值仿真方法,以3辆车编组、带转向架、无受电弓的1:8缩比列车模型为基础,运用软件ICEM的拓扑优化、多层网格加密技术、附面层网格技术与网格拉伸技术开展精细化四面体/三棱柱网格划分,构建列车明线运行环境下的计算域网格。通过建立地铁列车气动噪声仿真模型,研究了80 km/h、120 km/h和130 km/h不同工况下列车明线运行的气动声学特性;分析了不同速度下地铁列车流场脉动性能、气动噪声源性能和远场辐射噪声性能,研究列车外部流场情况及其声学规律。仿真结果表明,随着列车运行速度增加,列车车体表面的声功率级逐渐增加,声源能量和声压级也随之增大。对时速120公里地铁列车气动噪声特性的研究可为地铁车型气动声学优化设计提供参考。  相似文献   

15.
地铁与轻轨的供电仿真计算算法分析   总被引:1,自引:0,他引:1  
周曙  陈建君 《电气化铁道》2001,(4):23-26,43
建立一种地铁与轻轨的供电仿真计算算法模型,对不同的地铁与轻轨的供电方案,根据牵引计算数据库,运行图数据库所提供的数据进行供电仿真计算,可用于设计地铁与轻轨供电系统或对已有的系统进行校验。  相似文献   

16.
应用声学理论结合现场声场特性,对铁路环境噪声评价声学比例模型实验数据进行数学处理。通过模型实验值与现场测量值的比较分析,对建立的铁路环境噪声评价声学比例模型实验方法予以验证。  相似文献   

17.
采用MATLAB的车辆悬挂半主动控制的仿真研究   总被引:6,自引:0,他引:6  
对将MATLAB用于车辆悬挂半主动控制系统仿真的建模方法、非线性处理等环节进行了研究,以横向模型的平稳性仿真计算为例,说明了采用MATLAB对半主动控制进行仿真计算的简例有效性。  相似文献   

18.
建立轮轨系统动力学仿真计算模型,编制计算了程序,对广深线最小圆曲线半径进行仿真检算。  相似文献   

19.
滚动轴承作为高速列车牵引电机的重要部件,其故障情况严重影响列车运行安全。声学轴承故障诊断方式具有无安装侵入性、运维成本低的优点,但也具有信噪比低、故障特征难以提取的缺点,机器学习则具有克服噪声影响的鲁棒性。针对应用机器学习进行声学故障诊断时,少量特征无法全面表征轴承故障的难题,文章提出将格拉姆角场(GAF)与小波时频图进行叠加融合,构成6通道融合特征图用以有效表征轴承的故障。首先,建立牵引电机轴承声学故障试验台获取故障声学信号;其次,建立基于GAF的声学信号融合特征图,然后使用残差网络(ResNET)模型针对融合特征图特征训练并验证故障分类模型,并与以单种特征图作为特征的故障分类方法进行准确率对比。结果表明,基于GAF的融合特征图的声学故障分类模型具有99.89%的准确率,融合特征图能更有效地映射轴承故障。  相似文献   

20.
基于轨道交通行业声学领域相关标准,分析研究标准中规定的声学性能测量方法、计算方法、评估方式等内容。指出在运用相关标准时需要明确和规范之处,为各类轨道交通零部件产品的声学试验推荐最适合的检测标准,提出制定和完善声学测量相关标准的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号