共查询到20条相似文献,搜索用时 15 毫秒
1.
杨文青 《内蒙古公路与运输》2018,(5)
为了探究干湿循环作用下石灰粉煤灰改性红黏土的路用性能,通过模拟干湿循环对改性红黏土和原样红黏土对比进行了7d无侧限抗压强度试验、三轴试验及强度仪试验,结果表明:干湿循环作用下两种土体的抗压强度,抗剪强度及抗压回弹模量均呈下降趋势,改性红黏土各性能下降趋势相较原样红黏土较小,相同干湿循环次数下,改性红黏土各指标均优于原样红黏土。建议红黏土地区路基修筑掺加适量石灰粉煤灰提高路基强度、稳定性及抗变形能力。 相似文献
2.
3.
为研究液态离子型土壤固化剂加固红黏土的强度特性,采用美国Road Bond公司生产的液态离子型土壤固化剂对浙江金华地区的红黏土进行加固。在试验确定的最佳离子土壤固化剂掺量0.014%条件下,通过在试样土中加入不同掺量水泥、石灰,成型2种不同压实度(96%、98%)试件,分别进行固化土混合料的抗压回弹模量、抗压强度、劈裂强度和冻融强度试验,分析离子土壤固化剂加固红黏土的强度变化规律,并铺筑试验路进行验证。研究结果表明:红黏土中加入离子土壤固化剂后,其塑性指数有所降低,形成更为密实结构,固化剂、水泥或石灰的掺入都能增加混合料的抗压回弹模量,且在其他条件相同的情况下,掺入石灰对抗压回弹模量的增强效果优于水泥;各配合比混合料的7 d无侧限抗压强度受压实度影响较为显著,98%压实度固化效果优于96%压实度,固化剂、水泥、石灰的掺入均可较好提升试件的劈裂强度,随着水泥掺量的增加,其冻融抗压强度损失BDR也随之提高,其抗冻性能越好。结合现场试验路的情况,建议在实际工程中严格控制其压实度。 相似文献
4.
循环流化床粉煤灰(CFB灰)作为锅炉的主要固体废弃物,其资源化利用尚处于起步阶段。利用CFB灰的水化特性,制备以CFB灰为主、电石渣和脱硫石膏为辅、完全使用工业废渣的土体固化剂,提出CFB灰资源化利用的新方法。通过固化土室内试验,探究固化剂配比、养护龄期对固化土无侧限抗压强度的影响。结果表明:CFB灰活性高于普通粉煤灰;配比为CFB灰:电石渣:脱硫石膏=7.2:1.8:1,固化剂掺入量为10%时,固化土28天无侧限抗压强度可以达到2.12 MPa;固化土强度可以满足复合地基和止水帷幕中固化土天搅拌桩对于强度的要求。 相似文献
5.
《公路》2017,(3)
路基的回弹模量与含水率密切相关,长期的干湿循环作用必然会引起红黏土路基强度的变化。采用室内承载板法通过不同干湿循环路径下回弹模量试验,探讨红黏土回弹模量随干湿循环次数的变化规律。结果表明,重塑红黏土回弹模量值随干湿循环次数的增加而衰减,其中第一次衰减很大,其后曲线平缓,衰减较慢;压实度越大衰减幅度越大;含水率越低衰减幅度越大。不同干湿循环路径对红黏土回弹模量影响不同,同一含水率、同一压实度,经历相同的循环次数,先湿后干下回弹模量比先干后湿的要大。经过第一次干湿循环后,先干后湿下回弹模量基本都在10~15MPa范围之内,先湿后干下回弹模量基本都在15~25MPa范围之内。研究成果可为红黏土路基的长期稳定性评价提供参考。 相似文献
6.
7.
为掌握红黏土在荷载作用下的干湿循环特性,对常规固结仪进行了改造,发明了一种模拟土体荷载作用下的干湿循环试验方法,开展了干湿循环与上覆荷载共同作用下的红黏土的胀缩特性试验。试验结果表明:上覆压力为0kPa和50kPa时,干湿循环下红黏土胀缩率大于零,试样膨胀;压实度越大,膨胀量越大。初始含水率越小,膨胀量越大;增大上覆压力,可以抑制红黏土的膨胀性能;上覆压力为100kPa和200kPa时,干湿循环下红黏土胀缩率小于零,试样收缩;压实度越小,试样收缩量越大;初始含水率越大,收缩量越大;增大上覆压力,可以增大红黏土的收缩性能;任何上覆压力下,所有试样第一次干湿循环下红黏土胀缩性能最为显著,经历5次干湿循环后,胀缩性能趋于稳定状态。 相似文献
8.
固化红黏土强度特性和崩解性的改善是其在工程中广泛应用的重大前提,为研究不同F1和水泥掺量对固化红黏土强度特性、崩解性和邓肯-张模型参数的影响,开展不同F1和水泥掺量下固化红黏土的无侧限强度试验、崩解试验以及三轴试验。研究发现:F1可显著改善土体的水敏性和密实度,极大地提高固化土的无侧限抗压强度,加入水泥的固化土冻融5 d后强度显著增大,随着冻融循环次数的增加,固化土的强度均表现出衰减的趋势,F1掺量越高,衰减趋势越低;F1和水泥亦能显著改善红黏土的崩解性;固化土邓肯-张模型参数破坏比Rf随F1掺量的增大而增大,随水泥掺量的增大而减小;抗剪强度指标、初始弹性模量Ei和初始切线模量参数K均随着F1和水泥掺量的增大而增大,初始切线模量参数n随F1掺量的增大而减小,随水泥掺量的增大而增大。 相似文献
9.
《公路》2017,(11)
以余庆-凯里高速公路12标土样为研究对象,采用三轴试验研究了两种干湿循环方式(先干后湿和先湿后干)对压实红黏土抗剪强度指标的变化规律,并对干湿循环下边坡稳定性计算参数进行了探讨。研究结果表明,干湿循环作用显著降低了压实红黏土的抗剪强度指标,其中第一次衰减幅度很大,但经过一定次数的干湿循环作用后,强度指标趋于稳定状态。干湿循环对压实红黏土黏聚力的影响比内摩擦角影响要大。不同的干湿循环路径对压实红黏土抗剪强度指标影响的规律基本一致,但是先湿后干条件下压实红黏土抗剪强度指标比先干后湿要大。干湿循环下边坡稳定性计算参数取值建议采用长期强度指标值,黏聚力稳定值未经循环值的45%~55%,内摩擦角稳定值为未经循环值的45%~65%。研究结果更好地为红黏土地区工程建设提供技术依据。 相似文献
10.
11.
结合镇江城市道路路基处治项目,进行了固化粉煤灰的动三轴试验,分析了固化粉煤灰在重复荷载作用下的永久变形及动力特性,研究固化粉煤灰弹性应变、累积塑性应变、临界动应力和动回弹模量变化规律,论证了固化粉煤灰作为城市道路路基填料的可行性:结果表明:动应力是影响固化粉煤灰的动回弹模量大小的主要原因,其临界动应力值在90~100kPa之间,动态特性完全满足城市道路路基的设计要求,研究结果对类似工程研究具有借鉴意义。 相似文献
12.
固化粉煤灰力学性能试验 总被引:1,自引:0,他引:1
为了给固化粉煤灰在道路工程中的广泛应用提供理论参考,进行了固化粉煤灰的三轴剪切和直接剪切试验.分析了固化粉煤灰的力学性能.通过三轴剪切试验测得不同围压下固化粉煤灰的应力-应变曲线、峰值强度、残余强度、弹性模量和抗剪强度等力学指标;研究结果表明:固化粉煤灰峰值强度、残余强度和峰值应变与围压、固化剂含量、龄期基本上呈直线关系.其破坏过程可以用损伤的概念来解释;粘聚力和内摩擦角与密实度呈线性增长关系;粘聚力与含水量呈非线性关系;内摩擦角与含水量呈线性降低关系. 相似文献
13.
利用TSZ全自动三轴仪分别对碳纳米管掺量为0、0.5%、1.0%、1.5%和2.0%的粉煤灰复掺碳纳米管改性饱和黏土进行了围压为100 kPa、200 kPa、300 kPa和400 kPa的不排水不固结三轴剪切试验,研究改性饱和黏土的力学性能。试验结果表明:随着碳纳米管的掺入,改性饱和黏土的抗剪强度先增大后缓慢减小,峰值达到561.3 kPa,总体上试验土体的抗剪强度得到提升;内摩擦角先由11.41°减小至9.05°后迅速增大;黏聚力先增大后略微减小,峰值超过170 kPa,总体上试验土体的黏聚力得到了提升。综上可知粉煤灰复掺碳纳米管后能很好地提升饱和黏土的力学性能。 相似文献
14.
15.
16.
通过广泛调研国内外红黏土改良利用的研究现状,并结合云南曲靖高速公路所处地区红黏土物理力学特性,对该区域红黏土改良利用的可行性进行定性的论证。再通过室内试验,获取了公路路基工程设计规范中有关路基填料的几个关键指标值,论证红黏土经一定措施后的指标是否可以满足规范要求,是否具备现场实施条件。研究结果对于我国广泛分布红黏土的云贵高原及广西地区,具有一定借鉴意义。 相似文献
17.
为研究红黏土路基的路用性能,本文采用强度试验。以承载比和压实度为评价指标,对比研究了不同击实功和含水率对红黏土路用性能的影响。结果表明:随着含水率的增加,红黏土试件承载比(CBR)值有所升高。当击实次数达到一定值时,红黏土的密实度会趋于稳定状态,不会无限增加。当试件含水率为26%~28%时,三种击实功试件的膨胀量均趋于稳定,此时路基的水稳定性能较好。为确保红黏土路基的长期质量,建议红黏土路基碾压时的含水率在26%~28%之间。 相似文献
18.
《中外公路》2021,(4)
为了探究废旧轮胎橡胶颗粒与红黏土混合土作为路基填料的可行性,选择不同粒径(10目、20目、60目)不同含量的橡胶粉(0%、2%、4%、6%、8%和10%)掺入红黏土中,通过室内试验研究混合土的液塑限、击实特性、膨胀率和CBR值变化关系,探讨橡胶红黏土的路用性能和机理。结果表明:混合土液限和塑性指数随橡胶粉掺量的增大而降低,但仍大于50%和26,不能直接用作路基填料。最优含水率和最大干密度随橡胶粉掺量的增大而减小,呈一元二次函数关系,且三者间呈二元二次函数关系。膨胀率随橡胶粉掺量的增大而减小,橡胶目数越大,土体膨胀量越小。橡胶红黏土CBR随橡胶粉掺量的增大总体上减小,基本呈一元三次函数关系。红黏土中掺入橡胶粉,改良效果不佳,但可抑制土体的膨胀量。 相似文献
19.
20.
为了研究贺州地区红黏土的工程性质,通过岩土试验对其物理性质和力学性质进行分析。结果表明:贺州红黏土天然孔隙比高于常见的黏性土,土体黏粒含量较高,液限高,膨胀性弱,属于中压缩性土,渗透系数在0.1m/d~0.5m/d之间,最优含水量为25% ,最大干密度为2.03g/cm~3;裂缝以竖向为主,以横向为辅,竖向裂缝宽度为2~5.6 mm,横向裂缝宽度为0.6~5.9 mm;土体的标贯击数在8.5~15击之间,对应的承载力特征值为233kPa~317.36kPa;随着含水率的增大,抗剪强度逐渐增强(含水率到达24% 时最强),无侧限抗压强度也逐步增强(含水率达27% 时最强);土-水特征曲线含有突变点,吸力控制值小于21.82MPa时曲线趋于平缓,吸湿与脱湿段间存在一定的滞回效应;吸力达367.54 MPa时,吸湿段或脱湿段土样最终含水率几乎接近于0% 。 相似文献