首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄冈公铁两用长江大桥桥塔为H形钢筋混凝土结构,塔高190.5m,采用液压爬模法施工。为满足液压爬模在高塔施工过程中快速化施工的需求并确保施工安全,针对桥塔结构特点,选用将5m节段液压爬模改进成6m的节段液压爬模进行桥塔施工,并对液压爬模结构进行优化改进,包括整体制作大装饰槽和大倒角模板并固定在液压爬模上,在大装饰槽处附墙装置下增加牛腿,将塔柱内、外侧面液压爬模上支架后移平台加长50cm。通过合理布置桥塔液压爬模轨迹,桥塔液压爬模只在中下塔柱转角处进行1次转换,避免了液压爬模在高空中多次转换的风险;液压爬模采用分组整体转换,加快了桥塔施工速度。实践证明,该桥采用液压爬模施工技术,实现了高效快速化施工目标,且施工过程安全。  相似文献   

2.
武汉二七长江大桥主桥桥塔施工关键技术   总被引:3,自引:2,他引:1  
针对武汉二七长江大桥主桥桥塔施工工期紧、大体积混凝土构件裂缝控制及高空作业难度大、施工风险高等问题,该桥塔柱采用爬模施工,横梁采用满堂支架法施工,上塔柱采取塔梁同步施工技术.塔柱采用改进的液压自爬模系统和大节段模板、分竖向6 m大节段施工;为控制裂缝,下塔柱第1节与塔座混凝土同时灌注,横梁分2层施工,中塔柱合龙段施工时增设水平联结系以锁定两肢中塔柱;采用接力泵、振捣坐标化管理及有针对性的养护措施确保高空混凝土施工及质量;塔梁同步施工阶段,根据塔形变形曲线精确定位索道管,并设置高空防护平台、封闭液压自爬模系统等措施确保施工安全.  相似文献   

3.
苏通大桥南桥塔中、下塔柱施工   总被引:2,自引:1,他引:1  
苏通大桥南桥塔采用倒Y形塔, 中、下塔柱采用不对称的单箱单室箱形断面,施工中需克服塔柱斜率大、悬臂高等不利因素,且高塔施工受风力影响大,对施工平台及模板系统要求较高.采用液压自动爬模系统结合水平横撑的主动力顶撑的施工方法.实践表明:该施工方法能够提高塔柱施工效率, 缩短塔身施工周期,降低施工成本,保证混凝土的外观质量.  相似文献   

4.
灌河大桥主塔中下塔柱呈内倾斜状的构造,在施工塔柱起步段(第一、二节)无法利用液压爬模的爬架系统时,对塔柱斜率及防模板倾覆控制就十分重要;为达到既满足塔柱斜率、模板抗倾覆的要求,又提高功效、方便施工,本文结合灌河大桥主桥主塔的起步段的施工,系统地介绍了塔柱起步段模板加固系统、施工工艺。总结了采用液压爬模系统的外模施工起步段的塔柱取得的良好效益,以积累斜拉桥主塔的施工经验。  相似文献   

5.
以实际工程为例,对江顺大桥爬模系统的设计进行了介绍,然后从液压爬模布置,液压爬模转换成中、上塔柱液压爬模施工,爬升施工等几个方面的施工技术,通过对桥塔液压爬模轨迹进行合理的布置,在施工过程中只需要在中、下塔转角的位置对桥塔液压爬模进行一次转换,有效规避了多次转换的施工风险,实现了预期的施工目标,保证了施工安全。  相似文献   

6.
安庆长江铁路大桥主桥桥塔施工关键技术   总被引:1,自引:0,他引:1  
安庆长江铁路大桥主桥为双塔三索面钢桁梁斜拉桥,桥塔为上倒Y形、下钻石形混凝土结构,高210m.根据该桥塔超高、截面大且设置双层主筋的特点,塔座及下塔柱底节8.5m采用现浇模板支架法施工,其余均采用6 m节段液压爬模施工;横梁采用钢管柱支架法、分2层与塔柱结合段同步施工;上塔柱节段采取塔梁同步技术施工.施工时,在塔柱内设置劲性骨架,改进液压爬模系统,在中塔柱两塔肢间设4道钢管横撑;合理配置机械设备,采取大体积混凝土施工工艺控制技术;并采取桥塔线形测量控制等措施确保了施工安全和质量.该桥塔已于2012年9月14日施工完成.  相似文献   

7.
无背索斜拉桥多采用大倾角斜桥塔,使用爬模施工时存在仰面受力过大,成品直塔爬模施工系统存在无法直接使用的问题,以某无背索斜拉桥桥塔施工为例,提出将传统液压爬模模板横背楞处与劲性骨架增设拉杆拉结,并利用混凝土凝结过程侧压力减小特性,以小时距分次间断浇筑混凝土的施工方法,即“1次立模,2层浇筑”工艺,对此施工工艺以及将液压爬模模板横背楞处与劲性骨架拉结的构造方式进行计算分析。结果表明,劲性骨架能有效分担爬架仰面压力,爬架及模板背楞的受力与变形均满足规范要求。施工过程中实现了较大的塔柱分段浇筑高度,解决了斜塔爬模施工时存在的受力安全问题,且能缩短工期,降低工费。  相似文献   

8.
黄冈公铁两用长江大桥主桥为主跨567 m的钢桁梁斜拉桥,桥塔为H形混凝土结构.该桥桥塔塔柱采用液压爬模施工;下横梁采用落地式支架施工,与下塔柱节段混凝土同步浇筑;中塔柱施工时设置2道临时横撑,以改善塔柱施工阶段的受力;上横梁采用梯形桁架施工,与塔柱混凝土异步施工,上、下横梁混凝土均分2层浇筑.采用MIDAS有限元软件建模对桥塔施工过程进行分析,结果表明:上、下横梁混凝土分层浇筑时混凝土应力满足规范要求,且可有效降低现浇支架荷载;临时横撑的设置保证了施工阶段桥塔应力及位移均满足要求;上横梁梯形桁架支点处塔柱局部应力满足要求.  相似文献   

9.
舟岱大桥索塔的结构独特美观,桥塔采用钻石型塔身,中、下塔柱顺桥向内外侧面沿高度方向为圆弧。索塔液压爬模施工为全海上施工,受台风、海风、季风的影响,且长期海面施工的钢构件易受到腐蚀,施工的自然条件十分恶劣,为液压爬模使用带来了新的考验。本文通过液压爬模的设计和验算过程中的总结,探讨了液压爬模在海洋环境的安全施工及液压爬模的圆弧段爬升。合理的结构设计和严谨的结构验算为液压爬模在整个桥塔的施工,提供了安全保障,同时为液压爬模施工顺利到顶奠定了坚实的基础。  相似文献   

10.
高塔是构成大跨径桥梁的永久性主要承重结构,其混凝土工程施工过程中的质量保证及顺利性,会直接影响到桥梁自身的使用寿命。由于现今在建大跨径桥梁的高塔纪录不断在刷新,高塔混凝土垂直运输难度也在日益增加,如何高效、顺利、安全的完成混凝土泵送是业内一直在不断探究的课题。文章结合已建桥梁工程的实际情况论述了普通焊管埋置法在高塔混凝土泵送工程上的实际应用,可供类似工程施工借鉴。  相似文献   

11.
刘子阳 《中外公路》2015,(1):194-197
液压自爬模施工技术已在高墩柱施工中广泛应用,但目前大部分的液压爬模均为轨道和架体分离式爬模(即爬模自爬升过程中架体和轨道分离开来,互为支撑相互爬升),而架轨一体式爬模将爬升过程中的支撑系统转换在预埋锚座上,使一体式爬模整体爬升,有效地简化了轨道和架体互爬的施工工艺,使爬模施工功效得以提高。通过马来西亚槟城二桥主桥主塔施工中采用的该型爬模为应用实例,对一体式爬模的结构组成、工艺原理、施工工艺、施工控制要点进行阐述。  相似文献   

12.
甬江铁路特大桥为主跨468 m半飘浮体系双塔双索面混合梁铁路斜拉桥.混凝土梁采用满堂支架现浇,钢箱梁采用悬臂拼装,桥塔塔柱采用全自动液压爬模施工.为保证施工过程安全、快捷,成桥后线形和内力满足设计及高速列车运行的要求,采用基于无应力状态理论的全过程几何控制法进行施工控制,正装迭代计算采用TDV软件进行.结果表明:基于无...  相似文献   

13.
液压自爬模是现浇竖向钢筋混凝土结构的一项先进施工工艺.文中介绍铁了液压自爬模施工原理及罗坪特大桥采用国内最先进的QPM-100型液压自爬模的施工工艺,重点总结了塔柱施工工艺及注意事项.  相似文献   

14.
湛江海湾大桥索塔液压自爬模施工技术   总被引:2,自引:0,他引:2  
汪溯 《公路》2006,(11):62-65
以湛江海湾大桥上塔柱施工为例,介绍了中上塔柱液压自爬模的施工工艺。  相似文献   

15.
通过对HBT-60混凝土拖式泵在施工过程中的技术控制分析,介绍了拖式泵在前期的技术准备和混凝土泵送工作,以及泵送完毕后的清洗、维护、保养这3个阶段的技术控制与注意事项。  相似文献   

16.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面矮塔箱桁组合梁斜拉桥,2号和3号主墩均采用门形钢筋混凝土桥塔,塔高分别为155m和130.5m。桥塔设上、下2道横梁,下塔柱外倾,上塔柱内倾。该桥塔柱采用液压爬模分节施工,在两侧上、下塔柱间分别设置钢管横撑和临时对拉钢绞线;下横梁采用落地支架法施工,上横梁采用"牛腿+支架"法施工,上、下横梁混凝土与塔柱同步浇筑;索塔锚固区采用钢锚梁拉索锚固体系与预应力锚固体系相结合的方式锚固,塔柱预应力采用"#"形布置,利用定位支架精确定位钢锚梁。在施工期间,采用"零状态"测量+相对设站法定位等措施控制塔柱线形;并采用高性能混凝土抗裂技术防止大体积混凝土表面开裂。  相似文献   

17.
黄冈公铁两用长江大桥桥塔上横梁施工技术   总被引:1,自引:0,他引:1  
黄冈公铁两用长江大桥主桥为主跨567 m的斜拉桥.该桥桥塔上横梁为单箱单室预应力混凝土结构,长23.85m、宽8.4m、高8.0m,桥塔采用液压自爬模施工,上横梁与上塔柱采用异步施工.上横梁浇筑支架采用在两塔柱内侧设置剪力槽,安放对拉式钢牛腿作为支架受力支承点的方案.上横梁分2层浇筑,在第2层混凝土浇筑前张拉部分预应力筋.采用MIDAS Civil建模分析上横梁施工过程,结果表明,分层浇筑和分次张拉预应力钢筋可以有效减小现浇支架的荷载,且混凝土应力满足规范要求.该桥桥塔上横梁施工技术切实可行,实现了桥塔快速化施工.  相似文献   

18.
大岳高速洞庭湖大桥主桥为(1 480+453.6)m双塔双跨钢桁架悬索桥,桥塔采用门式框架结构,君山侧桥塔下横梁采用单箱单室预应力混凝土结构,高7.0~17.0m,顶面宽10.793m。针对该桥桥塔下横梁结构特点和施工难点,从施工可行性、安全性、经济性以及工期等方面,对塔梁同步、异步施工方案进行比选,确定采用塔梁异步施工方案。塔柱正常爬模施工,待施工塔柱至5号节段,在下横梁与塔柱相交截面位置预埋下横梁钢筋及预应力系统,同时搭设下横梁落地施工支架,塔柱施工过下横梁位置后,进行下横梁异步施工。下横梁施工支架由钢管桩落地支撑、型钢拱形桁架及底模三部分组成。下横梁与塔柱结合面连接钢筋采用Ⅰ级接头质量标准全断面接头。施工中还采取了预应力线形控制、塔柱稳定性及塔柱根部应力控制、混凝土裂纹控制等关键技术措施。  相似文献   

19.
武汉青山长江公路大桥主桥为主跨938m的双塔双索面全飘浮体系斜拉桥,北塔采用A形钢筋混凝土结构,塔高279.5m,由下塔柱、中塔柱、上塔柱、上横梁及塔冠等部分组成。北塔塔柱分为49个节段,标准节段长6m,采用液压爬模施工。施工时,在塔柱内设置劲性骨架,并在两塔肢间设13道临时横撑,按施工阶段对塔肢进行主动顶推。塔柱采用C55高性能混凝土,利用超高压泵将混凝土一次泵送到位。上横梁高6m,采用支架法施工,上横梁混凝土分2层(每层高3m)与两侧塔柱混凝土同步浇筑;钢锚梁采用10 000kN·m的塔吊整体吊装;上塔柱锚固区环向预应力采用深埋锚工艺施工。  相似文献   

20.
张国浩 《世界桥梁》2012,(2):13-15,37
马鞍山长江公路大桥左汊三塔悬索桥边塔为门式C50混凝土结构,塔柱高165.3m,分37个节段施工,第1节段高4.7m,第2~36节段为标准节段(高4.5m),第37节段高3.1m。1~3节段采用脚手架搭设施工,4~37节段采用液压爬模施工。塔柱施工关键技术有:劲性骨架制作及安装,主筋吊装,钢筋定位,钢筋保护层控制;模板间错台控制,模板拉杆设计,模板精确定位,混凝土面局部凹凸不平控制,上、下2节段混凝土面接缝控制;混凝土配合比、输送、布料、振捣及养护。实践表明,通过精心设计与组织施工,钢筋保护层厚度、混凝土面局部凹凸和新老混凝土错台等均得到了有效控制,研制的混凝土多溜槽系统成功解决了混凝土布料不均等问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号