首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了降低高速铁路桥上结构的振动与噪声水平,以我国CRH2型高速车辆和32 m跨度高速铁路简支箱梁及CRTS I型板式无砟轨道为对象,建立高速车辆-无砟轨道-桥梁耦合振动分析模型,分析比较了不同行车速度下无砟轨道减振层刚度对车轨桥系统动力响应的影响,为桥上减振型板式轨道动力学参数设计提供参考。计算结果表明,桥上采用减振型板式轨道可显著降低轨道板垂向振动加速度,在本文计算条件下其最大加速度幅值较无减振层时减小了57%以上;减振型板式轨道能稍微降低轮轨动力作用,可减小简支箱梁垂向振动加速度20%左右;较低的减振层刚度增大了轨道板垂向振动位移,不利于高速行车安全,而过大的减振层刚度不能有效降低轨道结构振动,综合考虑后建议桥上减振型板式轨道弹性垫层刚度在100~200 MN/m3之间选取。  相似文献   

2.
针对大跨系杆拱桥上铺设无缝道岔的工程需求,根据岔-桥相互作用原理和列车-道岔-桥梁耦合动力学原理,分别建立了纵向耦合与垂横向耦合振动仿真分析模型.以某新建客专205 m连续梁桥为例,结合3种桥型共9种布置方案,对其岔桥耦合特性和列车走行性进行综合分析研究,结果表明:温度跨度对此类桥上无缝道岔纵向受力变形影响较大,不同桥跨形式的伸缩附加力规律相同,大小不同,其中尼尔森刚架拱方案伸缩附加力、道岔尖轨尖端和心轨尖端相对基本轨的位移、钢轨断缝的最值最小,大跨连续梁拱桥最大;就大跨系杆拱桥上无缝道岔而言,转辙机处基本轨与桥梁相对位移是影响桥垮选型的重要因素;尼尔森拱桥因主跨跨度较大导致桥梁动位移相对较大,存在轮重减载率瞬时超限的问题,而小跨连续梁拱桥梁动位移仅1.33 mm,列车走行安全性和舒适性表现良好,车体横向振动加速度最大仅0.035g.  相似文献   

3.
以3跨连续梁桥为工程背景,通过动载试验和测量跑车状态下上部结构的加速度,分析桥梁的动力特征,结合国内外相关规范分析结构在行车状态下连续梁桥振动舒适性,为行车状态下桥梁振动舒适性研究提供参考。通过试验及分析,本桥动力特性正常,桥梁在行车激励下满足Euro code—1990规范及ISO 10137:2007(E)要求。  相似文献   

4.
对高速道岔弹性铁垫板的伤损发展及刚度演变过程进行了跟踪试验;基于实测数据,建立了车辆-道岔耦合动力学计算模型,分析了弹性铁垫板刚度劣化对车辆-道岔动力性能的影响,研究了刚度劣化状态下高速道岔对进一步提升运营速度的适应性。研究结果表明:随着高速道岔弹性铁垫板的长期使用,出现橡胶老化、开裂、分离、脱落,铁件锈蚀等伤损;有砟、无砟道岔铁垫板动静刚度比变化均较小,但静刚度均有所增大,有砟道岔铁垫板静刚度初期即有明显变化,上道3年增幅可超60%;普通地带无砟道岔铁垫板静刚度最大可增加30%,刚度变化小于有砟道岔;高寒、多风沙地带无砟道岔铁垫板静刚度变化较快;高速道岔弹性铁垫板刚度的逐渐劣化会对动力性能产生影响;刚度劣化状态下岔区钢轨变形减小,轮轨动力冲击作用增大,安全性参数均有提高;车辆和轮对的运动轨迹基本不变,但轮对振动加剧,车体振动也有加剧的趋势;高速道岔弹性铁垫板刚度劣化状态下,运营速度的提升会导致车辆-道岔系统动力性能进一步劣化,安全和疲劳性能裕量进一步减小,刚度劣化会使高速道岔对提速的适应性下降。扩大提速范围须重点关注道岔区弹性铁垫板刚度劣化情况,对弹性铁垫板进行适当更换,确保行车安全平稳。   相似文献   

5.
高速铁路简支梁桥竖向允许刚度及其分析方法   总被引:2,自引:0,他引:2  
桥梁竖向刚度的大小将直接影响列行车的舒适性与安全性。本文讨论桥梁竖向刚度问题的三种动力计算模型,指出不考虑车-桥动力耦合作用的简单分析模型虽然能在一定程度上反应车辆共振速度的影响,但对桥梁共振及车-桥耦合作用的影响下能提供真实结果。  相似文献   

6.
为确定合理的岔桥相对位置,建立了列车-道岔-桥梁耦合系统的振动分析模型,用数值模拟法,分析了350 km/h、18号渡线道岔布置于6×32 m的连续梁上,岔桥相对位置对列车、道岔及桥梁的各项动力特性的影响.结果表明:岔桥相对位置对最大动轮载、轮缘力、尖轨及心轨开口量、车体运行平稳性的影响不显著,对最大减载率、脱轨系数、钢轨动应力及桥梁振动加速度的影响较大;最优的岔桥相对位置是道岔辙叉部分布置在列车运行方向上距离第3跨桥墩1/8~1/4跨范围内.  相似文献   

7.
地震作用下高速列车-线路-桥梁系统动力响应   总被引:4,自引:0,他引:4  
为分析地震对高速列车通过桥梁时行车安全性的影响,基于高速铁路列车-线路-桥梁动力相互作用理论,建立了考虑地震输入的高速列车-线路-桥梁耦合动力学模型.以跨度32 m的简支箱梁桥和双块式无砟轨道为研究对象,对地震作用下高速列车通过桥梁时系统的动力响应进行了数值计算.结果表明:地震对高速列车-线路-桥梁系统动力响应的影响明显,对桥梁横向振动响应的影响大于对竖向振动响应的影响;地震会降低高速列车通过桥梁时的行车安全性和运行平稳性———在水平1.0 m/s2,竖向0.5 m/s2的规格化El Centro地震波作用下,当列车运行速度超过250 km/h时,轮重减载率超过了安全限值;当列车运行速度达300 km/h时,脱轨系数超过了安全限值.因此,评判地震作用下高速列车通过桥梁时的行车安全性,应考虑行车速度的影响.  相似文献   

8.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

9.
磁浮列车单铁悬浮车桥耦合振动分析   总被引:1,自引:1,他引:0  
为研究单铁悬浮车桥耦合振动,将悬浮控制系统、车辆结构、弹性轨道梁及桥梁安装系统作为整体系统,建立整体系统的磁浮列车的悬浮控制-弹性桥梁-机械结构垂向耦合振动模型,以不同频率的外力激扰模拟磁浮列车不同的速度下对桥梁的作用,分析了不同梁型在整体系统耦合条件下的跨中挠度与振动加速度的变化。研究结果表明:单铁悬浮稳定后,简支梁跨中挠度约为两跨连续梁悬浮处挠度的2.5倍;以200km.h-1车速通过桥梁时其挠度略小于400km.h-1车速通过工况,但前者再次达到稳定状态所需时间约为后者的1/3;车辆以相同速度通过桥梁时,连续梁悬浮处跨中挠度约为简支梁的40%,且前者振动加速度小于后者;仿真过程中桥梁安装临界刚度范围为(5.5~6.5)×107 N.m-1;两跨连续梁动力学性能较简支梁更为优秀。  相似文献   

10.
为探究铁路大跨T形刚构桥车桥耦合振动特性与动力性能,以宜万铁路马水河大桥为工程背景,建立桥梁空间杆系有限元模型以及包含31个自由度的车辆模型,进行车桥耦合振动计算分析.通过动载试验测试桥梁的自振特性,并测试列车以不同速度通过桥跨和以一定速度在特定位置制动时桥跨结构的动应变、动位移以及加速度等动力响应.依据动载试验与车桥耦合振动计算综合分析马水河大桥的动力性能.研究结果表明:车桥耦合振动计算结果与实测结果吻合较好,桥梁结构动力响应满足规范限值,该桥具有良好的横向、竖向刚度与动力性能;实测桥跨结构及墩顶动力系数最大值为1.08,桥梁结构受行车及制动的动力作用不明显;列车的动力响应随车速的提高而增大,但均满足规范限值,具有良好的安全性与平稳性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号