首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimates of road speeds have become commonplace and central to route planning, but few systems in production provide information about the reliability of the prediction. Probabilistic forecasts of travel time capture reliability and can be used for risk-averse routing, for reporting travel time reliability to a user, or as a component of fleet vehicle decision-support systems. Many of these uses (such as those for mapping services like Bing or Google Maps) require predictions for routes in the road network, at arbitrary times; the highest-volume source of data for this purpose is GPS data from mobile phones. We introduce a method (TRIP) to predict the probability distribution of travel time on an arbitrary route in a road network at an arbitrary time, using GPS data from mobile phones or other probe vehicles. TRIP captures weekly cycles in congestion levels, gives informed predictions for parts of the road network with little data, and is computationally efficient, even for very large road networks and datasets. We apply TRIP to predict travel time on the road network of the Seattle metropolitan region, based on large volumes of GPS data from Windows phones. TRIP provides improved interval predictions (forecast ranges for travel time) relative to Microsoft’s engine for travel time prediction as used in Bing Maps. It also provides deterministic predictions that are as accurate as Bing Maps predictions, despite using fewer explanatory variables, and differing from the observed travel times by only 10.1% on average over 35,190 test trips. To our knowledge TRIP is the first method to provide accurate predictions of travel time reliability for complete, large-scale road networks.  相似文献   

2.
The primary focus of this research is to develop an approach to capture the effect of travel time information on travelers’ route switching behavior in real-time, based on on-line traffic surveillance data. It also presents a freeway Origin–Destination demand prediction algorithm using an adaptive Kalman Filtering technique, where the effect of travel time information on users’ route diversion behavior has been explicitly modeled using a dynamic, aggregate, route diversion model. The inherent dynamic nature of the traffic flow characteristics is captured using a Kalman Filter modeling framework. Changes in drivers’ perceptions, as well as other randomness in the route diversion behavior, have been modeled using an adaptive, aggregate, dynamic linear model where the model parameters are updated on-line using a Bayesian updating approach. The impact of route diversion on freeway Origin–Destination demands has been integrated in the estimation framework. The proposed methodology is evaluated using data obtained from a microscopic traffic simulator, INTEGRATION. Experimental results on a freeway corridor in northwest Indiana establish that significant improvement in Origin–Destination demand prediction can be achieved by explicitly accounting for route diversion behavior.  相似文献   

3.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Effective prediction of travel times is central to many advanced traveler information and transportation management systems. In this paper we propose a method to predict freeway travel times using a linear model in which the coefficients vary as smooth functions of the departure time. The method is straightforward to implement, computationally efficient and applicable to widely available freeway sensor data.We demonstrate the effectiveness of the proposed method by applying the method to two real-life loop detector data sets. The first data set––on I-880––is relatively small in scale, but very high in quality, containing information from probe vehicles and double loop detectors. On this data set the prediction error ranges from 5% for a trip leaving immediately to 10% for a trip leaving 30 min or more in the future. Having obtained encouraging results from the small data set, we move on to apply the method to a data set on a much larger spatial scale, from Caltrans District 12 in Los Angeles. On this data set, our errors range from about 8% at zero lag to 13% at a time lag of 30 min or more. We also investigate several extensions to the original method in the context of this larger data set.  相似文献   

5.
In probe-based traffic monitoring systems, traffic conditions can be inferred based on the position data of a set of periodically polled probe vehicles. In such systems, the two consecutive polled positions do not necessarily correspond to the end points of individual links. Obtaining estimates of travel time at the individual link level requires the total traversal time (which is equal to the polling interval duration) be decomposed. This paper presents an algorithm for solving the problem of decomposing the traversal time to times taken to traverse individual road segments on the route. The proposed algorithm assumes minimal information about the network, namely network topography (i.e. links and nodes) and the free flow speed of each link. Unlike existing deterministic methods, the proposed solution algorithm defines a likelihood function that is maximized to solve for the most likely travel time for each road segment on the traversed route. The proposed scheme is evaluated using simulated data and compared to a benchmark deterministic method. The evaluation results suggest that the proposed method outperforms the bench mark method and on average improves the accuracy of the estimated link travel times by up to 90%.  相似文献   

6.
The prediction of free speeds of vehicles is an integral part of the economic appraisal of highways. It is to be noted that speeds not only govern the travel time costs, but also have major impacts on Vehicle Operating Costs (VOC). The World Bank has proposed a mechanistic free speed model based on the limiting speed concept for Highway Design and Maintenance (HDM)‐III. This model along with some refinements has been included in HDM‐4. The underlying assumption in the HDM free speed prediction model is that the free speed at any given point of time is the minimum of possible constraining speeds. This paper mainly addresses the methodology considered to update the free speed models through mechanistic principles (based on HDM‐4). This is accomplished by calibration of the model using the current data on free speeds, road and vehicle characteristics. Subsequently, the validation of the developed models has been carried out.  相似文献   

7.
To improve the quality of travel time information provided to motorists, there is a need to move away from point forecasts of travel time. Specifically, techniques are needed which predict the range of travel times which motorists may experience. This paper focuses on travel time prediction on motorways and evaluates three models for predicting the travel time range in real time as well as up to 1 h ahead. The first model, termed lane by lane tracing, relies on speed data from each lane to replicate the trajectories of relatively slow and relatively fast vehicles on the basis of speed differences across the lanes. The second model is based on the relationship between mean travel time (estimated using a neural network model) and driver-to-driver travel time variability. The results provide insight into the relative merits of the proposed techniques and confirm that they provide a basis for reliable travel time range prediction in the short-term prediction context (up to 1 h ahead).  相似文献   

8.
The purpose of this paper is to examine the performance of a new operational system for measuring traffic speeds and travel times which is based on information from a cellular phone service provider. Cellular measurements are compared with those obtained by dual magnetic loop detectors. The comparison uses data for a busy 14 km freeway with 10 interchanges, in both directions, during January–March of 2005. The dataset contains 1 284 587 valid loop detector speed measurements and 440 331 valid measurements from the cellular system, each measurement referring to a 5 min interval. During one week in this period, 25 floating car measurements were conducted as additional comparison observations. The analyses include visual, graphical, and statistical techniques; focusing in particular on comparisons of speed patterns in the time–space domain. The main finding is that there is a good match between the two measurement methods, indicating that the cellular phone-based system can be useful for various practical applications such as advanced traveler information systems and evaluating system performance for modeling and planning.  相似文献   

9.
As road networks become increasingly more congested, environmental concerns relating to emissions from motor vehicles assume a higher significance. This study found that road side concentrations of particles produced by freeway traffic in Brisbane, Australia, is primarily dependent upon traffic flow differentiated into fuel type, and wind speed. The analysis differentiates between diesel and petrol vehicles, and finds that particle concentration is very sensitive to the proportion of diesel-fuelled vehicles. A 20% increase in diesel vehicles can produce an 18% increase in particle concentrations compared with a 2% particle increase for the same number of additional petrol vehicles.  相似文献   

10.
Big data from floating cars supply a frequent, ubiquitous sampling of traffic conditions on the road network and provide great opportunities for enhanced short-term traffic predictions based on real-time information on the whole network. Two network-based machine learning models, a Bayesian network and a neural network, are formulated with a double star framework that reflects time and space correlation among traffic variables and because of its modular structure is suitable for an automatic implementation on large road networks. Among different mono-dimensional time-series models, a seasonal autoregressive moving average model (SARMA) is selected for comparison. The time-series model is also used in a hybrid modeling framework to provide the Bayesian network with an a priori estimation of the predicted speed, which is then corrected exploiting the information collected on other links. A large floating car data set on a sub-area of the road network of Rome is used for validation. To account for the variable accuracy of the speed estimated from floating car data, a new error indicator is introduced that relates accuracy of prediction to accuracy of measure. Validation results highlighted that the spatial architecture of the Bayesian network is advantageous in standard conditions, where a priori knowledge is more significant, while mono-dimensional time series revealed to be more valuable in the few cases of non-recurrent congestion conditions observed in the data set. The results obtained suggested introducing a supervisor framework that selects the most suitable prediction depending on the detected traffic regimes.  相似文献   

11.
The paper presents an algorithm for matching individual vehicles measured at a freeway detector with the vehicles’ corresponding measurements taken earlier at another detector located upstream. Although this algorithm is potentially compatible with many vehicle detector technologies, the paper illustrates the method using existing dual-loop detectors to measure vehicle lengths. This detector technology has seen widespread deployment for velocity measurement. Since the detectors were not developed to measure vehicle length, these measurements can include significant errors. To overcome this problem, the algorithm exploits drivers’ tendencies to retain their positions within dense platoons. The otherwise complicated task of vehicle reidentification is carried out by matching these platoons rather than individual vehicles. Of course once a vehicle has been matched across neighboring detector stations, the difference in its arrival time at each station defines the vehicle’s travel time on the intervening segment.Findings from an application of the algorithm over a 1/3 mile long segment are presented herein and they indicate that a sufficient number of vehicles can be matched for the purpose of traffic surveillance. As such, the algorithm extracts travel time data without requiring the deployment of new detector technologies. In addition to the immediate impacts on traffic monitoring, the work provides a means to quantify the potential benefits of emerging detector technologies that promise to extract more detailed information from individual vehicles.  相似文献   

12.
The paper presents a statistical model for urban road network travel time estimation using vehicle trajectories obtained from low frequency GPS probes as observations, where the vehicles typically cover multiple network links between reports. The network model separates trip travel times into link travel times and intersection delays and allows correlation between travel times on different network links based on a spatial moving average (SMA) structure. The observation model presents a way to estimate the parameters of the network model, including the correlation structure, through low frequency sampling of vehicle traces. Link-specific effects are combined with link attributes (speed limit, functional class, etc.) and trip conditions (day of week, season, weather, etc.) as explanatory variables. The approach captures the underlying factors behind spatial and temporal variations in speeds, which is useful for traffic management, planning and forecasting. The model is estimated using maximum likelihood. The model is applied in a case study for the network of Stockholm, Sweden. Link attributes and trip conditions (including recent snowfall) have significant effects on travel times and there is significant positive correlation between segments. The case study highlights the potential of using sparse probe vehicle data for monitoring the performance of the urban transport system.  相似文献   

13.
This work focuses on improving transit-service reliability by optimally reducing the transfer time required in the operations of transit networks. Service reliability of public-transit operations is receiving increased attention as agencies are faced with immediate problems of proving credible service while attempting to reduce operating cost. Unreliable service has also been cited as the major deterrent to existing and potential passengers. Due to the fact that most of the public transit attributes are stochastic: travel time, dwell time, demand, etc., the passenger is likely to experience unplanned waiting times and ride times. One of the main components of service reliability is the use of transfers. Transfers have the advantages of reducing operational costs and introducing more flexible and efficient route planning. However its main drawback is the inconvenience of traveling multi-legged trips. This work introduces synchronized (timed) time-tables to diminish the waiting time caused by transfers. Their use, however, suffers from uncertainty about the simultaneous arrival of two (or more) vehicles at an existing stop. In order to alleviate the uncertainty of simultaneous arrivals, operational tactics such as hold, skip stop and short-turn can be deployed considering the positive and negative effects, of each tactic, on the total travel time. A dynamic programming model was developed for minimizing the total travel time resulting with a set of preferred tactics to be deployed. This work describes the optimization model using simulation for validation of the results attained. The results confirm the benefits of the model with 10% reduction of total travel time and more than 200% increase of direct transfers (transfers in which both vehicles arrive simultaneously to the transfer point).  相似文献   

14.
Abstract

This paper presents an improved headway-based holding strategy integrating bus transit travel and dwelling time prediction. A support vector machine-based (SVM) model is developed to predict the baseline travel and dwell times of buses based on recent data. In order to reduce prediction errors, an adaptive algorithm is used together with real-time bus operational information and estimated baseline times from SVM models. The objective of the improved holding strategy is to minimize the total waiting times of passengers at the current stop and at successive stops. Considering the time-varying features of bus running, a ‘forgetting factor’ is introduced to weight the most recent data and reduce the disturbance from unexpected incidents. Finally, the improved holding strategy proposed in this study is illustrated using the microscopic simulation model Paramics and some conclusions are drawn.  相似文献   

15.
Singapore’s Electronic Road Pricing (ERP) system involves time-variable charges which are intended to spread the morning traffic peak. The charges are revised every three months and thus induce regular motorists to re-think their travel decisions. ERP traffic data, captured by the system, provides a valuable source of information for studying motorists’ travel behaviour. This paper proposes a new modelling methodology for using these data to forecast short-term impacts of rate adjustment on peak period traffic volumes. Separate models are developed for different categories of vehicles which are segmented according to their demand elasticity with respect to road pricing. A method is proposed for estimating the maximum likelihood value of preferred arrival time (PAT) for each vehicle’s arrivals at a particular ERP gantry under different charging conditions. Iterative procedures are used in both model calibration and application. The proposed approach was tested using traffic datasets recorded in 2003 at a gantry located on Singapore’s Central Expressway (CTE). The model calibration and validation show satisfactory results.  相似文献   

16.
A practical system is described for the real-time estimation of travel time across an arterial segment with multiple intersections. The system relies on matching vehicle signatures from wireless sensors. The sensors provide a noisy magnetic signature of a vehicle and the precise time when it crosses the sensors. A match (re-identification) of signatures at two locations gives the corresponding travel time of the vehicle. The travel times for all matched vehicles yield the travel time distribution. Matching results can be processed to provide other important arterial performance measures including capacity, volume/capacity ratio, queue lengths, and number of vehicles in the link. The matching algorithm is based on a statistical model of the signatures. The statistical model itself is estimated from the data, and does not require measurement of ‘ground truth’. The procedure does not require measurements of signal settings; in fact, signal settings can be inferred from the matched vehicle results. The procedure is tested on a 1.5 km (0.9 mile)-long segment of San Pablo Avenue in Albany, CA, under different traffic conditions. The segment is divided into three links: one link spans four intersections, and two links each span one intersection.  相似文献   

17.
To estimate travel times through road networks, in this study, we assume a stochastic demand and formulate a stochastic network equilibrium model whose travel times, flows, and demands are stochastic. This model enables us to examine network reliability under stochastic circumstances and to evaluate the effect of providing traffic information on travel times. For traffic information, we focus on travel time information and propose methods to evaluate the effect of providing that information. To examine the feasibility and validity of the proposed model and methods, we apply them to a simple network and the real road network of Kanazawa, Japan. The results indicate that providing ambulance drivers in Kanazawa with travel time information leads to an average reduction in travel time of approximately three minutes.  相似文献   

18.
Prior research on ultrafine particles (UFP) emphasizes that concentrations are especially high on-highway, and that time on highways contribute disproportionately to total daily exposures. This study estimates individual and population exposure to ultra-fine particles in the Minneapolis – St. Paul (Twin Cities) metropolitan area, Minnesota. Our approach combines a real-time model of on-highway size-resolved UFP concentrations (32 bins, 5.5–600 nm); individual travel patterns, derived from GPS travel trajectories collected in 144 individual vehicles (123 h at locations with UFP estimates among 624 vehicle-hours of travel); and, loop-detector data, indicating real-time traffic conditions throughout the study area. The results provide size-resolved spatial and temporal patterns of exposure to UFP among freeway users. On-highway exposures demonstrate significant variability among users, with highest concentrations during commuting peaks and near highway interchanges. Findings from this paper could inform future epidemiological studies in on-road exposure to UFP by linking personal exposures to traffic conditions.  相似文献   

19.
The transportation literature is rich in the application of neural networks for travel time prediction. The uncertainty prevailing in operation of transportation systems, however, highly degrades prediction performance of neural networks. Prediction intervals for neural network outcomes can properly represent the uncertainty associated with the predictions. This paper studies an application of the delta technique for the construction of prediction intervals for bus and freeway travel times. The quality of these intervals strongly depends on the neural network structure and a training hyperparameter. A genetic algorithm–based method is developed that automates the neural network model selection and adjustment of the hyperparameter. Model selection and parameter adjustment is carried out through minimization of a prediction interval-based cost function, which depends on the width and coverage probability of constructed prediction intervals. Experiments conducted using the bus and freeway travel time datasets demonstrate the suitability of the proposed method for improving the quality of constructed prediction intervals in terms of their length and coverage probability.  相似文献   

20.
This paper presents a Bayesian inference-based dynamic linear model (DLM) to predict online short-term travel time on a freeway stretch. The proposed method considers the predicted freeway travel time as the sum of the median of historical travel times, time-varying random variations in travel time, and a model evolution error, where the median is employed to recognize the primary travel time pattern while the variation captures unexpected supply (i.e. capacity) reduction and demand fluctuations. Bayesian forecasting is a learning process that revises sequentially the state of a priori knowledge of travel time based on newly available information. The prediction result is a posterior travel time distribution that can be employed to generate a single-value (typically but not necessarily the mean) travel time as well as a confidence interval representing the uncertainty of travel time prediction. To better track travel time fluctuations during non-recurrent congestion due to unforeseen events (e.g., incidents, accidents, or bad weather), the DLM is integrated into an adaptive control framework that can automatically learn and adjust the system evolution noise level. The experiment results based on the real loop detector data of an I-66 segment in Northern Virginia suggest that the proposed method is able to provide accurate and reliable travel time prediction under both recurrent and non-recurrent traffic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号