首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.

The scheduling operations of many paratransit agencies in the United States are undertaken manually. Those customers who are eligible to travel call in their requests the day before the trip is needed. As the trip requests are received, they are entered into a list of unscheduled trips. In order to schedule these trips, the scheduler must first determine the number of drivers and shuttle buses that are available as well as the time of availability of each. The scheduler must then try to match the rides that are in “similar” areas around the “same” time to place together on the driver's schedule. As new trip requests are made, the schedulers must adjust the trips that are already scheduled to try and schedule as many trips as possible in the most efficient way.

By developing a system that would improve the scheduling system operations of, in this case, DART (Delaware Administration for Regional Transit) First State Paratransit, customers can expect to receive better service that will improve their ability to travel throughout the community. Some devices that could also improve the operations of paratransit agencies are described in this paper, such as satellite‐based Global Positioning System (GPS), radio communication systems, mobile computers, radio frequency‐based data communication systems, internet web pages, automated paratransit information systems, and card‐based data storage and transfer media. However, because paratransit systems are difficult to operate cost‐efficiently, the optimum and most cost‐efficient device must be selected. The system chosen for DART First State Paratransit includes the use of a relational database management system (RDMS) and a transportation Geographic Information System (GIS). RDMS keeps track of the database information as well as the scheduled trips and the GIS is ideal for analyzing both geographic and temporal data. This system is shown to be superior to the manual system.  相似文献   

2.
Global Positioning System (GPS) technologies have been increasingly considered as an alternative to traditional travel survey methods to collect activity-travel data. Algorithms applied to extract activity-travel patterns vary from informal ad-hoc decision rules to advanced machine learning methods and have different accuracy. This paper systematically compares the relative performance of different algorithms for the detection of transportation modes and activity episodes. In particular, naive Bayesian, Bayesian network, logistic regression, multilayer perceptron, support vector machine, decision table, and C4.5 algorithms are selected and compared for the same data according to their overall error rates and hit ratios. Results show that the Bayesian network has a better performance than the other algorithms in terms of the percentage correctly identified instances and Kappa values for both the training data and test data, in the sense that the Bayesian network is relatively efficient and generalizable in the context of GPS data imputation.  相似文献   

3.
This paper applies the concept of entropy to mine large volumes of global positioning system (GPS) data in order to determine the purpose of stopped truck events. Typical GPS data does not provide detailed activity information for a given stop or vehicle movement. We categorize stop events into two types: (1) primary stops where goods are transferred and (2) secondary stops where vehicle and driver needs are met, such as rest stations. The proposed entropy technique measures the diversity of truck carriers with trucks that dwell for 15 min or longer at a given location. Larger entropy arises from a greater variety of carriers and an even distribution of stop events among these carriers. An analysis confirms our initial hypothesis that the stop locations used for secondary purposes such as fuel refills and rest breaks tend to have higher entropy, reflecting the diversity of trucks and carriers that use these facilities. Conversely, primary shipping depots and other locations where goods are transferred tend to have lower entropy due to the lower variety of carriers that utilize such locations.  相似文献   

4.

Transportation network data structures must be designed to meet the requirements of the analyses being conducted and must be compatible with the selected graphical user interface. Increasing interest in geographic information systems (GIS) and intelligent transportation systems (ITS) have further burdened the network data structure. It is possible to implement object oriented programming (OOP) technology to satisfy these needs, without making the data structure excessively complicated.

This paper shows how a well‐developed network data structure can incorporate major capabilities normally associated with stand‐alone GIS's. The design of a network data structure derives from both theoretical and practical considerations. A design of a network data structure, composed entirely of objects, is presented. Examples of its implementation, limitations, advantages, and possible extensions are drawn from experience with the General Network Editor (GNE).  相似文献   

5.
《运输规划与技术》2012,35(8):739-756
ABSTRACT

Smartphones have been advocated as the preferred devices for travel behavior studies over conventional surveys. But the primary challenges are candidate stops extraction from GPS data and trip ends distinction from noise. This paper develops a Resident Travel Survey System (RTSS) for GPS data collection and travel diary verification, and then uses a two-step method to identify trip ends. In the first step, a density-based spatio-temporal clustering algorithm is proposed to extract candidate stops from trajectories. In the second step, a random forest model is applied to distinguish trip ends from mode transfer points. Results show that the clustering algorithm achieves a precision of 96.2%, a recall of 99.6%, mean absolute error of time within 3?min, and average offset distance within 30 meters. The comprehensive accuracy of trip ends identification is 99.2%. The two-step method performs well in trip ends identification and promotes the efficiency of travel survey systems.  相似文献   

6.
A common way to determine values of travel time and schedule delay is to estimate departure time choice models, using stated preference (SP) or revealed preference (RP) data. The latter are used less frequently, mainly because of the difficulties to collect the data required for the model estimation. One main requirement is knowledge of the (expected) travel times for both chosen and unchosen departure time alternatives. As the availability of such data is limited, most RP-based scheduling models only take into account travel times on trip segments rather than door-to-door travel times, or use very rough measures of door-to-door travel times. We show that ignoring the temporal and spatial variation of travel times, and, in particular, the correlation of travel times across links may lead to biased estimates of the value of time (VOT). To approximate door-to-door travel times for which no complete measurement is possible, we develop a method that relates travel times on links with continuous speed measurements to travel times on links where relatively infrequent GPS-based speed measurements are available. We use geographically weighted regression to estimate the location-specific relation between the speeds on these two types of links, which is then used for travel time prediction at different locations, days, and times of the day. This method is not only useful for the approximation of door-to-door travel times in departure time choice models, but is generally relevant for predicting travel times in situations where continuous speed measurements can be enriched with GPS data.  相似文献   

7.
This paper applies a novel adaptive approach consisting of Artificial Neural Network (ANN) and Fuzzy Linear Regression (FLR) to improve car ownership forecasting in complex, ambiguous, and uncertain environments. This integrated approach is applied to forecast car ownership in Iran from 1930 to 2007. In this study, the level of car ownership is viewed as the result of demographic, politico-social, and urban structure factors including average family size, total population density, urban population density, urbanization rate, gross national product per capita, gasoline price, and total road length. To capture the potential complexity, uncertainty, and linearity relation between the car ownership function and its determinants, ANN and FLR (including eight well-known FLR) approaches are applied to the collected data. Next, the preferred ANN is selected based on sensitivity analysis results for the test data while the preferred FLR is identified with regard to ANOVA and MAPE results. The results obtained from the performance comparison demonstrate the considerable superiority of the preferred ANN over the preferred FLR regarding the nonlinear and complex nature of the car ownership function in Iran. This is the first study that presents an ANN-FLR approach for car ownership forecasting capable of handling complexity and non-linearity, uncertainty, pre-processing, and post-processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号