首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to timely and accurately forecast the evolution of traffic is very important in traffic management and control applications. This paper proposes a non-parametric and data-driven methodology for short-term traffic forecasting based on identifying similar traffic patterns using an enhanced K-nearest neighbor (K-NN) algorithm. Weighted Euclidean distance, which gives more weight to recent measurements, is used as a similarity measure for K-NN. Moreover, winsorization of the neighbors is implemented to dampen the effects of dominant candidates, and rank exponent is used to aggregate the candidate values. Robustness of the proposed method is demonstrated by implementing it on large datasets collected from different regions and by comparing it with advanced time series models, such as SARIMA and adaptive Kalman Filter models proposed by others. It is demonstrated that the proposed method reduces the mean absolute percent error by more than 25%. In addition, the effectiveness of the proposed enhanced K-NN algorithm is evaluated for multiple forecast steps and also its performance is tested under data with missing values. This research provides strong evidence suggesting that the proposed non-parametric and data-driven approach for short-term traffic forecasting provides promising results. Given the simplicity, accuracy, and robustness of the proposed approach, it can be easily incorporated with real-time traffic control for proactive freeway traffic management.  相似文献   

2.
Accurate and reliable forecasting of traffic variables is one of the primary functions of Intelligent Transportation Systems. Reliable systems that are able to forecast traffic conditions accurately, multiple time steps into the future, are required for advanced traveller information systems. However, traffic forecasting is a difficult task because of the nonlinear and nonstationary properties of traffic series. Traditional linear models are incapable of modelling such properties, and typically perform poorly, particularly when conditions differ from the norm. Machine learning approaches such as artificial neural networks, nonparametric regression and kernel methods (KMs) have often been shown to outperform linear models in the literature. A bottleneck of the latter approach is that the information pertaining to all previous traffic states must be contained within the kernel, but the computational complexity of KMs usually scales cubically with the number of data points in the kernel. In this paper, a novel kernel-based machine learning (ML) algorithm is developed, namely the local online kernel ridge regression (LOKRR) model. Exploiting the observation that traffic data exhibits strong cyclic patterns characterised by rush hour traffic, LOKRR makes use of local kernels with varying parameters that are defined around each time point. This approach has 3 advantages over the standard single kernel approach: (1) It allows parameters to vary by time of day, capturing the time varying distribution of traffic data; (2) It allows smaller kernels to be defined that contain only the relevant traffic patterns, and; (3) It is online, allowing new traffic data to be incorporated as it arrives. The model is applied to the forecasting of travel times on London’s road network, and is found to outperform three benchmark models in forecasting up to 1 h ahead.  相似文献   

3.
This paper proposes an Interactive Multiple Model-based Pattern Hybrid (IMMPH) approach to predict short-term passenger demand. The approach maximizes the effective information content by assembling the knowledge from pattern models using historical data and optimizing the interaction between them using real-time observations. It can dynamically estimate the priori pattern models combination in advance for the next time interval. The source demand data were collected by Smart Card system along one bus service route over one year. After correlation analysis, three temporal relevant pattern time series are generated, namely, the weekly, daily and hourly pattern time series. Then statistical pattern models are developed to capture different time series patterns. Finally, an amended IMM algorithm is applied to dynamically combine the pattern models estimations to output the final demand prediction. The proposed IMMPH model is validated by comparing with statistical methods and an artificial neural network based hybrid model. The results suggest that the IMMPH model provides a better forecast performance than its alternatives, including prediction accuracy, robustness, explanatory power and model complexity. The proposed approach can be potentially extended to other short-term time series forecast applications as well, such as traffic flow forecast.  相似文献   

4.
Eco-driving is an energy efficient traffic operation measure that may lead to important energy savings in high speed railway lines. When a delay arises in real time, it is necessary to recalculate an optimal driving that must be energy efficient and computationally efficient.In addition, it is important that the algorithm includes the existing uncertainty associated with the manual execution of the driving parameters and with the possible future traffic disturbances that could lead to new delays.This paper proposes a new algorithm to be executed in real time, which models the uncertainty in manual driving by means of fuzzy numbers. It is a multi-objective optimization algorithm that includes the classical objectives in literature, running time and energy consumption, and as well a newly defined objective, the risk of delay in arrival. The risk of delay in arrival measure is based on the evolution of the time margin of the train up to destination.The proposed approach is a dynamic algorithm designed to improve the computational time. The optimal Pareto front is continuously tracked during the train travel, and a new set of driving commands is selected and presented to the driver when a delay is detected.The algorithm evaluates the 3 objectives of each solution using a detailed simulator of high speed trains to ensure that solutions are realistic, accurate and applicable by the driver. The use of this algorithm provides energy savings and, in addition, it permits railway operators to balance energy consumption and risk of delays in arrival. This way, the energy performance of the system is improved without degrading the quality of the service.  相似文献   

5.
This paper explores the accuracy of the transport model forecast of the Gothenburg congestion charges, implemented in 2013. The design of the charging system implies that the path disutility cannot be computed as a sum of link attributes. The route choice model is therefore implemented as a hierarchical algorithm, applying a continuous value of travel time (VTT) distribution. The VTT distribution was estimated from stated choice (SC) data. However, based on experience of impact forecasting with a similar model and of impact outcome of congestion charges in Stockholm, the estimated VTT distribution had to be stretched to the right. We find that the forecast traffic reductions across the cordon and travel time gains were close to those observed in the peak. However, the reduction in traffic across the cordon was underpredicted off-peak. The necessity to make the adjustment indicates that the VTT inferred from SC data does not reveal the travellers’ preferences, or that there are factors determining route choice other than those included in the model: travel distance, travel time and congestion charge.  相似文献   

6.

Researchers have improved travel demand forecasting methods in recent decades but invested relatively little to understand their accuracy. A major barrier has been the lack of necessary data. We compiled the largest known database of traffic forecast accuracy, composed of forecast traffic, post-opening counts and project attributes for 1291 road projects in the United States and Europe. We compared measured versus forecast traffic and identified the factors associated with accuracy. We found measured traffic is on average 6% lower than forecast volumes, with a mean absolute deviation of 17% from the forecast. Higher volume roads, higher functional classes, shorter time spans, and the use of travel models all improved accuracy. Unemployment rates also affected accuracy—traffic would be 1% greater than forecast on average, rather than 6% lower, if we adjust for higher unemployment during the post-recession years (2008 to 2014). Forecast accuracy was not consistent over time: more recent forecasts were more accurate, and the mean deviation changed direction. Traffic on projects that opened from the 1980s through early 2000s was higher on average than forecast, while traffic on more recent projects was lower on average than forecast. This research provides insight into the degree of confidence that planners and policy makers can expect from traffic forecasts and suggests that we should view forecasts as a range of possible outcomes rather than a single expected outcome.

  相似文献   

7.
Travel time is an important index for managers to evaluate the performance of transportation systems and an intuitive measure for travelers to choose routes and departure times. An important part of the literature focuses on predicting instantaneous travel time under recurrent traffic conditions to disseminate traffic information. However, accurate travel time prediction is important for assessing the effects of abnormal traffic conditions and helping travelers make reliable travel decisions under such conditions. This study proposes an online travel time prediction model with emphasis on capturing the effects of anomalies. The model divides a path into short links. A Functional Principal Component Analysis (FPCA) framework is adopted to forecast link travel times based on historical data and real-time measurements. Furthermore, a probabilistic nested delay operator is used to calculate path travel time distributions. To ensure that the algorithm is fast enough for online applications, parallel computation architecture is introduced to overcome the computational burden of the FPCA. Finally, a rolling horizon structure is applied to online travel time prediction. Empirical results for Guangzhou Airport Expressway indicate that the proposed method can capture an abrupt change in traffic state and provide a promising and reliable travel time prediction at both the link and path levels. In the case where the original FPCA is modified for parallelization, accuracy and computational effort are evaluated and compared with those of the sequential algorithm. The proposed algorithm is found to require only a piece rather than a large set of traffic incident records.  相似文献   

8.
城市的交通状态是可以预测的。有效的交通状态预测能优化交通状态,减少交通阻塞。贝叶斯网络(Bayesian Networks,BN)是目前不确定知识和推理领域最有效的理论模型之一。文章在综合考虑交通阻塞成因的基础上构建网络模型,在已有的交通状态数据的基础上提出基于贝叶斯法则的学习算法,并通过计算变量间的条件概率来计算交通阻塞发生的可能性,达到预测的目的。  相似文献   

9.
This study models the joint evolution (over calendar time) of travelers’ departure time and mode choices, and the resulting traffic dynamics in a bi-modal transportation system. Specifically, we consider that, when adjusting their departure time and mode choices, travelers can learn from their past travel experiences as well as the traffic forecasts offered by the smart transport information provider/agency. At the same time, the transport agency can learn from historical data in updating traffic forecast from day to day. In other words, this study explicitly models and analyzes the dynamic interactions between transport users and traffic information provider. Besides, the impact of user inertia is taken into account in modeling the traffic dynamics. When exploring the convergence of the proposed model to the dynamic bi-modal commuting equilibrium, we find that appropriate traffic forecast can help the system converge to the user equilibrium. It is also found that user inertia might slow down the convergence speed of the day-to-day evolution model. Extensive sensitivity analysis is conducted to account for the impacts of inaccurate parameters adopted by the transport agency.  相似文献   

10.
Forecasts of travel demand are often based on data from the most recent time point, even when cross-sectional data is available from multiple time points. This is because forecasting models with similar contexts have higher transferability, and the context of the most recent time point is believed to be the most similar to the context of a future time point. In this paper, the author proposes a method for improving the forecasting performance of disaggregate travel demand models by utilising not only the most recent dataset but also an older dataset. The author assumes that the parameters are functions of time, which means that future parameter values can be forecast. These forecast parameters are then used for travel demand forecasting. This paper describes a case study of journeys to work mode choice analysis in Nagoya, Japan, using data collected in 1971, 1981, 1991, and 2001. Behaviours in 2001 are forecast using a model with only the most recent 1991 dataset and models that combine the 1971, 1981, and 1991 datasets. The models proposed by the author using data from three time points can provide better forecasts. This paper also discusses the functional forms for expressing parameter changes and questions the temporal transferability of not only alternative-specific constants but also level-of-service and socio-economic parameters.  相似文献   

11.
In this paper, a novel freeway traffic speed estimation method based on probe data is presented. In contrast to other traffic speed estimators, it only requires velocity data from probes and does not depend on any additional data inputs such as density or flow information. In the first step the method determines the three traffic phases free flow, synchronized flow, and Wide Moving Jam (WMJ) described by Kerner et al. in space and time. Subsequently, reported data is processed with respect to the prevailing traffic phase in order to estimate traffic velocities. This two-step approach allows incorporating empirical features of phase fronts into the estimation procedure. For instance, downstream fronts of WMJs always propagate upstream with approximately constant velocity, and downstream fronts of synchronized flow phases usually stick to bottlenecks. The second step assures the validity of measured velocities is limited to the extent of its assigned phase. Effectively, velocity information in space-time can be estimated more distinctively and the result is therefore more accurate even if the input data density is low.The accuracy of the proposed Phase-Based Smoothing Method (PSM) is evaluated using real floating car data collected during two traffic congestions on the German freeway A99 and compared to the performance of the Generalized Adaptive Smoothing Method (GASM) as well as a naive algorithm. The quantitative and qualitative results show that the PSM reconstructs the congestion pattern more accurately than the other two. A subsequent analysis of the computational efficiency and sensitivity demonstrates its practical suitability.  相似文献   

12.
Video image processing system (VIPS) is more efficient than other detecting systems. However, VIPS involves outdoor images and is very sensitive to the external environment, which could greatly decrease its accuracy according to rapid environmental changes. To obtain accurate traffic data accordingly, VIPS must address the problems such as growing shadows in transition; distortion of images due to the headlights at night; noises caused by the rain, snow or fog; and occlusions. This study intends to accurately calculate traffic data while addressing the shadow and occlusion problems, which are the most difficult tasks for the image‐detector‐based traffic data system. In this study, an algorithm for the individual vehicle tracking collection was developed to address the occlusion problem and to eliminate the noises or shadows caused by external environmental factors. A traffic data collection system was also proposed in order to accurately track individual vehicles that pass through the detection region. In addition, establishing an integrated system with shadow removal and occlusion handling using an image processing was also proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a dynamic vehicle routing and scheduling model that incorporates real time information using variable travel times. Dynamic traffic simulation was used to update travel times. The model was applied to a test road network. Results indicated that the total cost decreased by implementing the dynamic vehicle routing and scheduling model with the real time information based on variable travel times compared with that of the forecast model. As well, in many cases total running times of vehicles were also decreased. Therefore, the dynamic vehicle routing and scheduling model will be beneficial for both carriers in reducing total costs and society at large by alleviating traffic congestion.  相似文献   

14.
This article proposes Δ-tolling, a simple adaptive pricing scheme which only requires travel time observations and two tuning parameters. These tolls are applied throughout a road network, and can be updated as frequently as travel time observations are made. Notably, Δ-tolling does not require any details of the traffic flow or travel demand models other than travel time observations, rendering it easy to apply in real-time. The flexibility of this tolling scheme is demonstrated in three specific traffic modeling contexts with varying traffic flow and user behavior assumptions: a day-to-day pricing model using static network equilibrium with link delay functions; a within-day adaptive pricing model using the cell transmission model and dynamic routing of vehicles; and a microsimulation of reservation-based intersection control for connected and autonomous vehicles with myopic routing. In all cases, Δ-tolling produces significant benefits over the no-toll case, measured in terms of average travel time and social welfare, while only requiring two parameters to be tuned. Some optimality results are also given for the special case of the static network equilibrium model with BPR-style delay functions.  相似文献   

15.
This paper considers the problem of freeway incident detection within the general framework of computer‐based freeway surveillance and control. A new approach to the detection of freeway traffic incidents is presented based on a discrete‐time stochastic model of the form ARIMA (0, 1, 3) that describes the dynamics of traffic occupancy observations. This approach utilizes real‐time estimates of the variability in traffic occupancies as detection thresholds, thus eliminating the need for threshold calibration and lessening the problem of false‐alarms. Because the moving average parameters of the ARIMA (0, 1, 3) model change over time, these parameters can be updated occasionally. The performance of the developed detection algorithm has been evaluated in terms of detection rate, false‐alarm rate, and average time‐lag to detection, using a total of 1692 minutes of occupancy observations recorded during 50 representative traffic incidents.  相似文献   

16.
This paper presents an alternative planning framework to model and forecast network traffic for planning applications in small communities, where limited resources debilitate the development and applications of the conventional four-step travel demand forecasting model. The core idea is to use the Path Flow Estimator (PFE) to estimate current and forecast future traffic demand while taking into account of various field and planning data as modeling constraints. Specifically, two versions of PFE are developed: a base year PFE for estimating the current network traffic conditions using field data and planning data, if available, and a future year PFE for predicting future network traffic conditions using forecast planning data and the estimated base year origin–destination trip table as constraints. In the absence of travel survey data, the proposed method uses similar data (traffic counts and land use data) as a four-step model for model development and calibration. Since the Institute of Transportation Engineers (ITE) trip generation rates and Highway Capacity Manual (HCM) are both utilized in the modeling process, the analysis scope and results are consistent with those of common traffic impact studies and other short-range, localized transportation improvement programs. Solution algorithms are also developed to solve the two PFE models and integrated into a GIS-based software called Visual PFE. For proof of concept, two case studies in northern California are performed to demonstrate how the tool can be used in practice. The first case study is a small community of St. Helena, where the city’s planning department has neither an existing travel demand model nor the budget for developing a full four-step model. The second case study is in the city of Eureka, where there is a four-step model developed for the Humboldt County that can be used for comparison. The results show that the proposed approach is applicable for small communities with limited resources.  相似文献   

17.
Driving cycles are an important input for state-of-the-art vehicle emission models. Development of a driving cycle requires second-by-second vehicle speed for a representative set of vehicles. Current standard driving cycles cannot reflect or forecast changes in traffic conditions. This paper introduces a method to develop representative driving cycles using simulated data from a calibrated microscopic traffic simulation model of the Toronto Waterfront Area. The simulation model is calibrated to reflect road counts, link speeds, and accelerations using a multi-objective genetic algorithm. The simulation is validated by comparing simulated vs. observed passenger freeway cycles. The simulation method is applied to develop AM peak hour driving cycles for light, medium and heavy duty trucks. The demonstration reveals differences in speed, acceleration, and driver aggressiveness between driving cycles for different vehicle types. These driving cycles are compared against a range of available driving cycles, showing different traffic conditions and driving behaviors, and suggesting a need for city-specific driving cycles. Emissions from the simulated driving cycles are also compared with EPA’s Heavy Duty Urban Dynamometer Driving Schedule showing higher emission factors for the Toronto Waterfront cycles.  相似文献   

18.
针对交通安全现状及国内外交通预警发展现状的分析,阐明建立交通事故预警系统的必要性。分析了基于人、车、路、环境四要素的道路交通事故的成因,根据交通事故预警系统设计原则和建立预警系统的目的,采用相关理论,选用合适的交通信息采集技术,建立了交通事故预警系统。该系统包括驾驶员预警子系统、车辆防撞预警子系统、车辆状况预警子系统、道路安全预警子系统和交通气象预警子系统。  相似文献   

19.
This paper examines the impact of traffic-flow on CO, NO2 and PM emissions at two distinct traffic junctions and evaluates the use of emission factors. The study includes three scenarios regarding pollutant emissions, which combine a field, experimental and semi-empirically estimated traffic parameters for free, interrupted and congested traffic-flow conditions. It evaluates the emission patterns for heterogeneity in traffic characteristics of both junctions. The results suggest the corrections to be made to emission factors at traffic junctions for better forecast of air quality.  相似文献   

20.
Singapore’s Electronic Road Pricing (ERP) system involves time-variable charges which are intended to spread the morning traffic peak. The charges are revised every three months and thus induce regular motorists to re-think their travel decisions. ERP traffic data, captured by the system, provides a valuable source of information for studying motorists’ travel behaviour. This paper proposes a new modelling methodology for using these data to forecast short-term impacts of rate adjustment on peak period traffic volumes. Separate models are developed for different categories of vehicles which are segmented according to their demand elasticity with respect to road pricing. A method is proposed for estimating the maximum likelihood value of preferred arrival time (PAT) for each vehicle’s arrivals at a particular ERP gantry under different charging conditions. Iterative procedures are used in both model calibration and application. The proposed approach was tested using traffic datasets recorded in 2003 at a gantry located on Singapore’s Central Expressway (CTE). The model calibration and validation show satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号