首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
隧道盾构下穿既有工程会扰动周围的土体,导致其邻近的构筑物产生变形,甚至结构发生破坏。文章以某邻近桥梁盾构隧道工程为研究对象,分析该盾构隧道施工过程对周边桥梁桩基的影响,并基于有限差分法,分析桥梁桩基及盾构上方路面的变形规律。研究表明,在盾构隧道施工过程中,桥梁桩基及盾构上方路面的变形均小于规范所规定的限值,说明盾构施工对其周边构筑物结构影响较小。研究成果可为隧道盾构施工方案提供理论指导和参考依据。  相似文献   

2.
为研究变高度双层钢桁梁结构在竖向荷载作用下的受力特点,以福州道庆洲大桥为工程背景,截取了其主墩处6个节段,设计制作了1∶5的缩尺模型并开展相关试验。结果表明:在超过最大设计荷载作用下,结构仍处于弹性阶段,其承载力安全储备较高;在竖向荷载作用下,结构主桁腹杆左右翼缘的应力相差较小,而上下弦杆的上下翼缘应力相差较大,说明结构主桁腹杆以受轴力为主且应力水平较高,上下弦杆除受轴力外还受到一定弯矩的影响,符合一般桁架的受力特点,设计时需要重点关注主桁上下弦杆的抗弯能力、腹杆的抗压能力及稳定性;偏载作用下结构的变形及应力普遍小于对称加载,偏载工况并不控制结构设计;变高度的双层钢桁梁结构杆件受力复杂,经过优化设计可满足其受力性能。  相似文献   

3.
杭州市某地下通道工程上跨已运营的杭州地铁1号线盾构隧道,其基坑上跨段地质条件及周围环境复杂,需对其引起的既有隧道的变形进行严格控制,因此设计中针对性地采取了地基加固、分段开挖等施工控制措施。文章针对桩基工程阶段和基坑开挖阶段的隧道监测数据,研究分析了不同施工阶段盾构隧道竖向位移、水平向位移及收敛变形的规律和特点。实测结果表明:桩基工程施工可引起隧道的竖向下沉(最大值为5 mm),对水平径向收敛影响不大;基坑开挖可引起隧道的上浮(最大值1.9 mm)及水平径向收敛变形,对水平位移影响不大。  相似文献   

4.
文章依托广州地区某邻近运营地铁车站的基坑工程,使用数值分析方法,建立了考虑车站结构-土体-基坑围护结构共同作用的二维非线性数值计算模型,研究了基坑与车站间隔距离、基坑开挖深度等参数变化情况下,地铁车站结构的变形规律及振动响应特性。计算结果表明,基坑开挖明显改变了邻近地铁车站的变形场。基坑开挖越深,距离车站越近,影响越加明显。基坑开挖引起地铁车站的变形表现为竖向隆起和向基坑内侧移动;随着基坑开挖深度的增加,车站结构水平位移变化较为明显,最大竖向位移变化不大,但竖向位移差变化明显,对结构影响较大;在列车动载作用下,随着基坑开挖深度增加和间隔距离的减小,对基坑围护结构本身和邻近车站结构的振动响应特征都将产生影响,而且这种影响均是加剧结构的振动。文章进一步提出了控制车站结构变形的技术措施,为类似地铁车站设计和施工提供了参考。  相似文献   

5.
利用桩基自平衡测试方法的试验结果,结合桩基设计规范,分析了黄泛平原地区桩基承载力的受力特点与影响桩基承载力的主要因素。试验与分析结果表明,黄泛平原地区第四系冲积物以亚砂土、亚粘土夹粉细砂为主,多层结构居多,上层多为粘性土。此种工程地质条件下,影响桩基竖向承载力因素较多,特别是桩基施工质量与桩基混凝土浇筑对桩基竖向承载力影响较大。  相似文献   

6.
文章以高速公路特大桥桩基础施工为研究背景,通过在桩基础布置土压力盒和钢筋应力计,对桥梁桩基础竖向受力、桩身摩阻力、桩侧土压力进行监测,收集数据分析得出桩基内侧和外侧竖向受力传递深度随荷载增加而变大,桩基内侧和外侧摩阻力存在一定的差异,桩基外侧土压力高于内侧,这是由于受到坡面影响造成的,但最终均达到了平衡状态,桩基承载特性良好。  相似文献   

7.
为研究水平岩层厚度和施工方法对隧道围岩力学行为的影响规律,文章基于数值计算软件Midas-GTS建立隧道三维数值模型,通过对比六种不同水平岩层厚度和施工方法工况下的围岩上各监测点的数据,明确在全断面法和台阶法施工下,水平岩层厚度改变对围岩各监测点竖向位移、竖向应力和剪切应力的影响规律。研究得出:全断面法和台阶法施工对隧道围岩的变形和受力的影响均不大,隧道围岩力学行为基本一致,综合考虑效率和经济性可采用全断面法施工;水平岩层厚度对围岩变形影响较大,围岩各监测点的竖向位移随岩层厚度增加而增大,当水平岩层最小时,隧道变形最小,具有更好的稳定性;隧道围岩拱肩处剪切应力最大,拱脚处最小,其余位置数值较小;水平岩层厚度的变化会引起隧道围岩力学行为较大改变,围岩应变随岩层厚度增加而增大,因此实际施工中应注意水平岩层厚度过大时的施工安全问题。  相似文献   

8.
为研究扬州膨胀土地层中深基坑施工过程受力与变形特性,文章基于扬州某隧道工程深基坑开挖实例,进行了大量现场实测分析,结果表明:(1)围护结构深层水平位移最大值位置基本位于基坑开挖面以上0~7 m范围内。最大深层水平位移值约处于0.13%H~0.34%H之间,墙顶竖向位移处于-0.13%H~0.11%H之间;(2)立柱隆沉值位于-0.05%H~0.17%H之间。相邻两立柱的差异沉降值为0.14%;(3)地表沉降值约位于0.04%H~0.14%H之间,最大地表沉降值在距离基坑边0.5H_e~0.7H_e范围内,影响范围约为2.5H_e。而最大地表沉降值与最大围护结构侧移的比值约为0.27~0.42范围,地表沉降值远小于围护结构水平位移值;(4)孔隙水压力和侧向土压力在施工中逐渐减小,土压力包络线为典型的梯形包络线的形式,土压力位于1.07γH_e包络线范围内;(5)膨胀土基坑在施工中表现出明显的膨胀变形。分析得到的各项受力与变形值范围,对于扬州膨胀土基坑设计和施工变形控制具有一定参考价值。  相似文献   

9.
为探析盾构隧道穿越桥梁桩基群中桩基托换过程的受力转换机理及盾构隧道掘进对群桩基础结构的影响,文章以深圳地铁10号线盾构隧道穿越广深高速桥梁桩基群为工程背景,采用FLAC~(3D)开展桩基托换与地铁隧道施工的数值模拟。研究结果表明:桩基托换后,桥梁荷载体系从桥面板→桩基→地基土转换为桥面板→既有桩基+托换桩→地基土,被托换桩的上覆荷载能够有效地转移到新建托换桩上;在桩基托换与盾构掘进过程中所产生的沉降变形能够提高桩端阻力与桩侧摩阻力,使得桩基结构的最大主应力有所降低;桥梁桩基沉降量以盾构隧道推进过程中由地层损失和掘进扰动产生的沉降变形为主,桩基托换所产生的沉降量占总沉降量的20%~30%;桩基沉降变形、侧向位移与主应力降低效应均主要表现在托换桩上,非托换桩变化不大;盾构隧道管片衬砌结构变形主要产生在桩基托换区域附近,且以沉降变形为主,水平位移较小。  相似文献   

10.
为研究不同净距双洞隧道在上下台阶法同时开挖下的围岩变形、受力及支护受力情况,文章基于Midas/GTS软件平台对10m、14m、18m、22m净距双洞隧道进行了数值模拟分析。结果表明:(1)隧道中岩墙一侧拱腰水平位移相比左侧拱腰大,拱顶处、仰拱处水平位移较小,且随着净距变化其值基本保持不变;(2)隧道拱顶及仰拱位置处围岩竖向位移较大,拱腰处较小,随着隧道净距增大各部位竖向位移均减小;(3)随着隧道净距的增大拱顶及仰拱处的水平应力及竖向应力逐渐减小,但减小幅度较小,同时拱腰处水平应力及竖向应力变化较大,且减小幅度不断扩大;(4)随着净距的增大,锚杆轴力最大值及喷混结构最大拉应力发生了减小,减小幅度逐渐扩大。  相似文献   

11.
膨胀性围岩具有吸水膨胀的特性,不仅使隧道支护结构的受力和变形显著表现在施工阶段,其"后荷效应"还长期呈现在运营阶段,从而有别于一般的隧道。文章采用弹性力学原理,研究推导了隧道围岩在不同膨胀条件下,隧道支护结构所受压力及变形的解析解;从理论上,分析判明了在随围岩膨胀率变化、结构支护刚度变化和围岩膨胀压力变化的情况下,隧道支护结构受力与变形关系及分布规律;结合工程实例,采用有限元方法进行了验证。计算结果表明该解析解具有一定的可靠性,能为该类隧道的设计和施工提供依据,对建成后的结构长期安全性评价,也有重要意义。  相似文献   

12.
针对区间新建隧道近接既有桩基的地铁工程,进行了三维有限元数值模拟的施工力学行为研究.研究结果表明与无桩情况相比较,近接桩基施工将引起新建隧道自身结构,特别是与既有桩基近接一侧边墙,不利的受力特征,并且近接施工还将引起既有桩基产生偏向隧道水平方向的"拉伸"变形情况.因此,需要采取加固措施,以确保隧道自身结构以及近接地下建筑物的安全.此外,考察不同刚度折减系数时,发现桩基水平侧向变形几乎没有变化,这表明改变盾构管片的拼装方式,在整体上对近接地下建筑物几乎无影响.  相似文献   

13.
地铁车站下穿或者并行桥梁桩基施工时,会使桥梁桩基一侧大面积开挖卸载。若近接摩擦桩,地铁车站施工势必会导致其桩侧摩阻力降低,威胁既有桥梁运营安全。基于此,文章采用理论分析手段,将地铁车站邻近既有摩擦桩基受力简化为四部分,推导了地铁车站邻近摩擦桩基的桩侧摩阻力计算公式,并以北京地铁19号线北太平桥站施工为工程背景进行验证。结果表明,当地铁车站开挖深度大于桩基长度时,桩侧摩阻力损失比最大为42.8%;地铁车站开挖宽度对桩侧摩阻力损失影响相对较小;通过施工前对桩基周围土体一定范围内的土体进行注浆加固可提高内摩擦角,且内摩擦角控制在25°~30°范围内较为合适。  相似文献   

14.
对于大吨位转体桥,转体下承台比常规桥梁要厚,转体承台基坑深度较深,给邻近既有线桥梁施工带来更大的安全风险。以武汉至大悟跨铁路大吨位转体桥为背景,利用实体有限元模型对转体承台进行分析研究。研究结果表明:设置预应力能有效改善转体承台受力,使各桩基反力更加均匀;过早或过晚张拉预应力都会对承台产生不利影响。通过以桩基反力和承台应力作为控制指标,确定预应力张拉合理时间。  相似文献   

15.
为研究不同汽车荷载及胎压对沥青路面结构的力学响应影响,文章以典型的半刚性基层沥青路面结构为例,采用ANSYS有限元软件模拟了以20%为步距增大的超载标压、标载超压的路面表层力学变化,并将荷载、胎压两因素对各力学响应指标的影响进行方差分析。结果表明:路表左右轮载点竖向应力值分别为底基层底竖向应力值的46.39倍、47.56倍;随荷载逐步递增,路表的竖向位移、水平及竖向应力均呈上升趋势;随胎压逐步递增,路面表层水平及竖向应力均呈上升趋势,但胎压增大对竖向位移影响不明显。因此在实际公路运营中应控制行车超载、超压情况,以免路面力学结构发生破坏。  相似文献   

16.
软土地区基坑开挖时一个重要的环境问题是土体移动对邻近桩基的影响。文章通过建立三维有限元模型,对软土地区中基坑开挖对邻近桩基竖向受荷性状影响进行研究。研究结果表明,基坑开挖前后桩基轴向抗压承载力减小约13.6%,并且引起既有承受竖向荷载的邻近桩基产生可观的附加沉降。为此,针对桩土接触力随基坑开挖的变化规律进行了系统的分析,并基于分析结果,通过考虑开挖后桩侧极限摩阻力的降低,对单桩沉降计算的荷载传递法进行改进,使得能考虑开挖对邻近桩基竖向受荷性状的影响。  相似文献   

17.
在地铁建设中,暗挖通道包穿既有结构施工造成的影响问题越来越受到关注。文章以北京地铁7号线达官营车站为背景,基于"地层-结构"相互作用的原理,采用三维有限元法,模拟了暗挖通道包穿既有4个小导洞的施工过程,分析了暗挖通道施工对小导洞变形、应力的影响,以及对地表沉降及邻近管线的影响。研究结果表明,包穿施工对既有结构扰动明显;通过在包穿部位采取结构加强措施后,导洞变形、导洞两侧的应力集中及地表沉降等都会得到很好的控制。  相似文献   

18.
大断面浅埋偏压隧道CRD法施工工序研究   总被引:2,自引:0,他引:2  
文章以良村隧道CRD法施工为工程背景,布设了变形监测点及内力测试元件,分析了CRD法施工隧道围岩变形情况及结构内力特征,并对CRD法施工隧道在不同开挖顺序下的开挖过程进行了数值模拟,分析比较了不同开挖顺序时的围岩位移、应力变化情况。结果表明:CRD法对各分部施工工序影响较大,且各分部对拱顶下沉的影响程度从大至小依次为1部、2部、3部和4部;隧道内侧围岩压力大于外侧,钢支撑内力均为压应力,且拱腰位置轴力大于其它部位。比较隧道开挖变形的差异以及结构的受力特点,结合数值分析结果,得出了山体外侧先开挖方案无论在围岩变形还是隧道结构受力方面相比于山体外侧后开挖都较小,安全系数相对较高。因此,合理的施工工序应该是先进行山体外侧开挖并施作初期支护,然后再在山体内侧开挖施工。  相似文献   

19.
高温大直径薄壁管道由于受到径向膨胀的影响,管道易发生塑性变形、泄漏等管道破坏情况。小直径管道的常规应力计算,则对径向膨胀忽略不计。为了解决径向膨胀引起高温大直径管道塑性变形等问题,通过对催化烟气管道的应力模拟与分析,探讨在节点和补偿器建模因素影响下,高温大直径管道应力的变化。结果表明:对于高温大直径薄壁管道,当采用管壁节点时径向膨胀对管道应力的影响较大;当采用复杂补偿器模型时管道节点的位移和约束力改变较大。最后通过数据分析得出采用管壁节点约束可模拟管道径向膨胀和复杂补偿器模型可优化管道应力分析,为高温大直径管道的应力模拟提供参考。  相似文献   

20.
刘斌 《西部交通科技》2023,(12):155-158
新建隧道邻近既有隧道施工可能会引起既有隧道结构的较大变形,甚至造成重大事故,这在邻近隧道是浅埋偏压隧道时风险更大。文章依托广西某新建公路隧道的实际情况,使用数值模拟方法计算其开挖对既有隧道应力和变形的影响。结果表明:沿既有隧道纵向,变形最大位置出现在起始开挖断面;沿既有隧道横向,应力变形在断面上反对称分布,变形和应力的最大位置在右侧拱脚处,需加强相应防护监控措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号