首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The curving performance of a transit rail vehicle model with 21 degrees of freedom is optimized using a combination of multibody dynamics and a genetic algorithm (GA). The design optimization is to search for optimal design variables so that the noise or wear, arising from misalignment of the wheelsets with the track, is reduced to a minimum level during curve negotiations with flange contact forces guiding the rail vehicle. The objective function is a weighted combination of angle of attack on wheelsets and ratios of lateral to vertical forces on wheels. Using the combination of the GA and a multibody dynamics modelling program, A’GEM, the generation of governing equations of motion for complex nonlinear dynamic rail vehicle models and the search for global optimal design variables can be carried out automatically. To demonstrate the feasibility and efficacy of the proposed approach of using the combination of multibody dynamics and GAs, the numerical simulation results of the optimization are offered, the selected objective function is justified, and the sensitivity analysis of different design parameters and different design parameter sets on curving performance is performed. Numerical results show that compared with suspension and inertial parameter sets, the geometric parameter set has the most significant effect on curving performance.  相似文献   

2.
The main goal of crashworthiness is to ensure that vehicles are safer for occupants, cargo and other road or rail users. The crash analysis of vehicles involves structural impact and occupant biomechanics. The traditional approaches to crashworthiness not only do not take into account the full vehicle dynamics, but also uncouple the structural impact and the occupant biomechanics in the crash study. The most common strategy is to obtain an acceleration pulse from a vehicle structural impact analysis or experimental test, very often without taking into account the effect of suspensions in its dynamics, and afterwards feed this pulse into a rigid occupant compartment that contains models of passengers. Multibody dynamics is the most common methodology to build and analyse vehicle models for occupant biomechanics, vehicle dynamics and, with ever increasing popularity, structural crash analysis. In this work, the aspects of multibody modelling relevant to road and rail vehicles and to occupant biomechanical modelling are revised. Afterwards, it is shown how multibody models of vehicles and occupants are used in crash analysis. The more traditional aspects of vehicle dynamics are then introduced in the vehicle models in order to appraise their importance in the treatment of certain types of impact scenarios for which the crash outcome is sensitive to the relative orientation and alignment between vehicles. Through applications to the crashworthiness of road and of rail vehicles, selected problems are discussed and the need for coupled models of vehicle structures, suspension subsystems and occupants is emphasized.  相似文献   

3.
Inspired by the optimisation design method for restoration of worn wheel profiles, an inverse design method based on optimal rail grinding profiles is presented in this paper. To improve grinding quality, vehicle dynamic performance is chosen as the main criteria and rolling radii difference function is selected as the key factor (also main target function) determining dynamic performance. Grinding material to be removed is chosen as the auxiliary target aimed at extending rail service life. Besides that, wheel–rail contact distribution is also taken into consideration as an auxiliary target preventing stress concentration and fatigue growth. By introducing certain presuppositions, all the design targets will form an inverse design problem. This problem can be solved using hybrid discrete numerical methods. Considering different grinding requirements, two examples of grinding profile design for straight and curved track will be discussed. Results show that the presented method is efficient and effective. Practical implementation has been carried out at several grinding sites in China.  相似文献   

4.
A design methodology for mechatronic vehicles is presented. With multidisciplinary optimization (MDO) methods, strongly coupled mechanical, control and other subsystems are integrated as a synergistic vehicle system. With genetic algorithms (GAs) at the system level, the mechanical, control and other relevant parameters can be optimized simultaneously. To demonstrate the feasibility and efficacy of the proposed design methodology for mechatronic vehicles, it is used to resolve the conflicting requirements for ride comfort, suspension working spaces and unsprung mass dynamic loads in the optimization of half-vehicle models with active suspensions. Both deterministic and random road excitations, both rigid and flexible vehicle bodies and both perfect measurement of full state variables and estimated limited state variables are considered. Numerical results show that the optimized vehicle systems based on the methodology have better overall performance than those using the linear quadratic Gaussian (LQG) controller. It is shown that the methodology is suitable for complex design optimization problems where: (1) there is interaction between different disciplines or subsystems; (2) there are multiple design criteria; (3) there are multiple local optima; (4) there is no need for sensitivity analysis for the optimizer at the system level; and (5) there are multiple design variables.  相似文献   

5.
A design methodology for mechatronic vehicles is presented. With multidisciplinary optimization (MDO) methods, strongly coupled mechanical, control and other subsystems are integrated as a synergistic vehicle system. With genetic algorithms (GAs) at the system level, the mechanical, control and other relevant parameters can be optimized simultaneously. To demonstrate the feasibility and efficacy of the proposed design methodology for mechatronic vehicles, it is used to resolve the conflicting requirements for ride comfort, suspension working spaces and unsprung mass dynamic loads in the optimization of half-vehicle models with active suspensions. Both deterministic and random road excitations, both rigid and flexible vehicle bodies and both perfect measurement of full state variables and estimated limited state variables are considered. Numerical results show that the optimized vehicle systems based on the methodology have better overall performance than those using the linear quadratic Gaussian (LQG) controller. It is shown that the methodology is suitable for complex design optimization problems where: (1) there is interaction between different disciplines or subsystems; (2) there are multiple design criteria; (3) there are multiple local optima; (4) there is no need for sensitivity analysis for the optimizer at the system level; and (5) there are multiple design variables.  相似文献   

6.
Rail vehicles are today increasingly equipped with active suspension systems for ride comfort purposes. In this paper, it is studied whether these often powerful systems also can be used to improve crosswind stability. A fast rail vehicle equipped with active secondary suspension for ride comfort purposes is exposed to crosswind loads during curve negotiation. For high crosswind loads, the active secondary suspension is used to reduce the impact of crosswind on the vehicle. The control input is taken from the primary vertical suspension deflection. Three different control cases are studied and compared with the only comfort-oriented active secondary suspension and a passive secondary suspension. The application of active secondary suspension resulted in significantly improved crosswind stability.  相似文献   

7.
This paper describes an analytical study of the lateral dynamics of multi-articulated vehicles with multiple axles. A linear planar model of vehicle dynamics is adopted for multiple-axle vehicle combinations with an optional number of trailers. Two tractor and double-trailer combinations are examined for their directional stability and response. Non-oscillatory stability and steering sensitivity in steady-state turning and lane changing are analysed using a stability factor of multiple-axle vehicle combinations. Off-tracking in the steady-state turning of multiple-axle vehicle combinations is also analysed. Numerical calculations for oscillatory stability, steering sensitivity, and off-tracking are presented for multiple-axle vehicle combinations.  相似文献   

8.
This paper summarises the historical development of railway freight vehicles and how vehicle designers have tackled the difficult challenges of producing running gear which can accommodate the very high tare to laden mass of typical freight wagons whilst maintaining stable running at the maximum required speed and good curving performance. The most common current freight bogies are described in detail and recent improvements in techniques used to simulate the dynamic behaviour of railway vehicles are summarised and examples of how these have been used to improve freight vehicle dynamic behaviour are included. A number of recent developments and innovative components and sub systems are outlined and finally two new developments are presented in more detail: the LEILA bogie and the SUSTRAIL bogie.  相似文献   

9.
膜片弹簧离合器是现今手动挡汽车的主要离合器形式,针对膜片弹簧在轴向受压过程中,弹簧大端压紧力与变形量的关系,新膜片弹簧工作点的压紧力与摩擦片最大磨损点所对应的膜片弹簧压紧力之间变化平缓以及驾驶员平均操纵力最小这两个矛盾问题的优化.利用权重系数法对其权重进行分配,并采用遗传算法对压紧力变化的平均值最小与驾驶员操纵力最小进...  相似文献   

10.
A steering-based controller for improving lateral performance of longer combination vehicles (LCVs) is proposed. The controller steers the axles of the towed units to regulate the time span between the driver steering and generation of tyre lateral forces at the towed units and consequently reduces the yaw rate rearward amplification (RWA) and offtracking. The open-loop effectiveness of the controller is evaluated with simulations and its closed loop or driver in the loop effectiveness is verified on a test track with a truck–dolly–semitrailer test vehicle in a series of single- and double-lane change manoeuvres. The developed controller reduces the yaw rate RWA and offtracking considerably without diminishing the manoeuvrability. Furthermore, as a byproduct, it decreases the lateral acceleration RWA moderately. The obtained safety improvements by the proposed controller can promote the use of LCVs in traffic which will result in the reduction of congestion problem as well as environmental and economic benefits.  相似文献   

11.
李新君 《汽车实用技术》2021,46(7):60-61,65
随着社会需求的不断发展,对特种车的承载能力要求越来越高,而机械结构等的设计越来越轻型化,这对特种车的设计提出了更高的要求,因此需对特种车进行结构优化分析与设计.基于此,针对特种车某承力轴进行优化设计,文章以轴通孔直径和承力面直径为优化参数,在ANSYS中进行模型的建立与分析,得到了较合适的优化参数,为设计人员进行特种车...  相似文献   

12.
针对微型汽车发动机低速动力不足的问题,结合发动机整机性能分析软件和多体动力学分析软件,建立了原发动机整机性能模型和单阀系多体动力学分析模型。在准确模型的基础上对凸轮型线进行了结构设计,并选出了既能满足整机性能要求又能满足单阀系多体动力学要求的最优凸轮型线组。试验结果表明,该方法可以方便找出最优的凸轮型线范围,减少了试验次数,降低了开发成本。  相似文献   

13.
In this study, in order to examine the effects of a wheelset driving system suspension parameters on the re-adhesion performance of locomotives, the stick–slip vibration was analysed according to theoretical and simulation analysis. The decrease of the slip rate vibration amplitude improved the stability of the stick–slip vibration and the re-adhesion performance of locomotives. Increasing the longitudinal guide stiffness of the wheelset and the motor suspension stiffness were proposed as effective measures to improve the re-adhesion performance of locomotives. These results showed that the dynamic slip rate was inversely proportional to the series result of the square root of the longitudinal guide and motor suspension stiffness. The larger the motor suspension stiffness was, the smaller the required longitudinal guidance stiffness was at the same re-adhesion time once the wheel slip occurred, and vice versa. The simulation results proved that the re-adhesion time of the locomotive was approximately proportional to amplitude of the dynamic slip rate. When the stick–slip vibration occurred, the rotary and the longitudinal vibrations of the wheelset were coupled, which was confirmed by train's field tests.  相似文献   

14.
基于道路设计与交通规划的道路选线优化模型   总被引:1,自引:0,他引:1  
结合道路设计理论与交通规划理论,以地理信息系统为平台,开发道路选线优化模型。该模型是一个费用指向的优化问题,最小化费用目标函数中包括道路建设费用、土方工程费、道路交通诱发的环境污染的不经济费用,OD交通在路网上总走行时间的时间费用等。优化模型首先随机生成新建道路的空间位置候选方案集,并自动设计新建道路的平曲线和竖曲线,计算新建道路的各项工程费用。然后,对变化的路网进行自动拓扑,通过交通量分配得到OD交通在新路网上的走行时间和交通流特征,计算OD交通的环境负荷。最后,在遗传算法中判断候选方案的优劣,直到得到一个最佳的新建道路的空间位置方案为止。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号