首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
线性超高过渡设计采用直线顺坡,在超高过渡段的起、终点都有一个折角,使纵坡发生突变,影响行车的稳定性和舒适性,并导致路面受力发生显著变化.通过对线性超高过渡设计方法缺陷的分析,借鉴理想缓和曲线须满足的条件,提出了超高过渡设计的理想条件,并通过数学推导得出满足理想条件的三次曲线.分析了三次曲线超高过渡可能引起的过渡段附加纵坡过大和横向排水不畅的问题.研究结果表明:采用三次曲线超高过渡,在过渡段长度相同时,附加纵坡最大值为线性过渡的1.5倍,须对超高过渡段最小长度进行重新计算;在超高横坡不大于6%时,横向排水不畅的缓坡路段长度有所缩短,更有利于横向排水.最后,阐述了各种情况下三次曲线超高过渡的设计计算方法.  相似文献   

2.
探讨了公路平曲线在设置超高时如何选取超高过渡方式及确定超高缓和段长度,以期保证超高过渡平稳,行驶舒适、安全。  相似文献   

3.
对公路工程超高过渡段长度的确定方法进行了讨论,并对《公路路线设计规范》中确定超高过渡段长度的方法进行了改善,总结出一套可广泛应用的确定超高过渡段长度的方法。  相似文献   

4.
超高设计是公路设计中非常重要的设计内容,结合新标准研究了超高缓和段长度的确定方法、超高的过渡方式,以及绕行车道内边缘旋转时超高的计算方法,并深入讨论了当超高渐变率小于1/330情况下的超高计算方法。  相似文献   

5.
收费广场过渡段长度取值时除从宽度变化考虑外,同时应考虑超高变化,分别计算过渡段的长度,取较长者作为广场过渡段。针对现行路线规范中未给出变宽段超高渐变长度的计算方法,提出一种折中的计算模式,为类似工程提供参考。  相似文献   

6.
依据云南某县山岭重丘区农村公路实际项目分析研究,结合项目的特殊性,通过横向力系数及极限半径计算超高值,根据现行规范取值要求选取加宽值,并确定过渡段长度。研究结果表明,转弯半径R15 m的路段设置超高、加宽;最大超高值为4%,路面加宽值1.5 m;超高、加宽过渡段采用15 m,可以满足道路实际通行需求。  相似文献   

7.
为了揭示多车道高速公路超高过渡段积水分布规律,基于流体动力学理论,选取典型多车道高速公路超高过渡段设计参数,利用道路BIM设计软件建立了40组三维道路模型;分析了路面积水量和排水设施径流量的关系,建立了考虑排水设施与路面构造深度影响的降雨模拟方案;采用离散相模型和多相流模型耦合,模拟了降雨条件下的路面积水状态;分析了不同组合参数下的超高过渡段积水厚度数据,得到了合成坡度、道路宽度、降雨强度与超高渐变率对积水厚度的影响模式,计算了各车道最大积水厚度,分析了六车道、八车道高速公路积水横向分布规律。研究结果表明:积水厚度与合成坡度、超高渐变率负相关,与降雨强度、道路宽度正相关,其中降雨强度对积水厚度的影响最大,超高渐变率对积水厚度的影响最小;合成坡度为2.02%~8.54%,降雨强度为1~5 mm·min-1时,多车道高速公路超高过渡段最小积水厚度为0.58 mm,最大达到28.35 mm;当降雨强度为5 mm·min-1时,高速公路超高过渡段内外侧车道最大积水厚度差异明显,六车道由内侧车道到外侧车道的最大积水厚度比例为1.0∶3.1∶3.3,八车道为1.00∶0.96∶1.03∶1.36;多车道高速公路超高过渡段积水厚度峰值先出现在道路中间附近,然后向外侧移动,最大积水厚度一般出现在外侧车道。   相似文献   

8.
公路设计超高计算方法的研究   总被引:3,自引:0,他引:3  
超高设计是公路设计中非常重要的设计内容,本文结合新标准研究了超高缓和段长度的确定方法、超高的过渡方式,以及绕行车道内边缘旋转时超高的计算方法,并深入讨论了当超高渐变率小于1/330情况下的超高计算方法。  相似文献   

9.
针对公路路线超高设计,在简单介绍公路路线超高横坡度主要控制因素与超高值选取范围的基础上,提出相应的过渡方法与旋转方法,旨在为实际的超高设计工作提供参考借鉴。  相似文献   

10.
公路超高设计是公路几何设计中十分重要的一个方面,是道路设计者非常关注的问题之一.在阐述公路路线超高设计条件的基础上,对其关键问题即最大超高值选用、超高过渡段及缓和曲线长度问题进行详细分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号