首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Currently there are different approaches to filter algorithms based on the Kalman filter. One of the most used filter algorithms is the Ensemble Kalman Filter (EnKF). It uses a Monte Carlo approach to the filtering problem. Another approach is given by the Singular Evolutive Extended Kalman (SEEK) and Singular Evolutive Interpolated Kalman (SEIK) filters. These filters operate explicitly on a low-dimensional error space which is represented by an ensemble of model states. The EnKF and the SEIK filter have been implemented within a parallel data assimilation framework in the Finite Element Ocean Model FEOM. In order to compare the filter performances of the algorithms, several data assimilation experiments are performed. The filter algorithms have been applied with a model configuration of FEOM for the North Atlantic to assimilate the sea surface height in twin experiments. The dependence of the filter estimates on the represented error subspace is discussed. In the experiments the SEIK algorithm provides better estimates than the EnKF. Furthermore, the SEIK filter is much cheaper in terms of computing time.  相似文献   

2.
Ocean-biogeochemical models show typically significant errors in the representation of chlorophyll concentrations. The model state can be improved by the assimilation of satellite chlorophyll data with algorithms based on the Kalman filter. However, these algorithms do usually not account for the possibility that the model prediction contains systematic errors in the form of model bias. Accounting explicitly for model biases can improve the assimilation performance. To study the effect of bias estimation on the estimation of surface chlorophyll concentrations, chlorophyll data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are assimilated on a daily basis into the NASA Ocean Biogeochemical Model (NOBM). The assimilation is performed by the ensemble-based SEIK filter combined with an online bias correction scheme. The SEIK filter is simplified here by the use of a static error covariance matrix. The performance of the filter algorithm is assessed by comparison with independent in situ data over the 7-year period 1998–2004. The bias correction results in significant improvements of the surface chlorophyll concentrations compared to the assimilation without bias estimation. With bias estimation, the daily surface chlorophyll estimates from the assimilation show about 3.3% lower error than SeaWiFS data. In contrast, the error in the global surface chlorophyll estimate without bias estimation is 10.9% larger than the error of SeaWiFS data.  相似文献   

3.
Several studies on coupled physical–biogeochemical models have shown that major deficiencies in the biogeochemical fields arise from the deficiencies in the physical flow fields. This paper examines the improvement of the physics through data assimilation, and the subsequent impact on the ecosystem response in a coupled model of the North Atlantic. Sea surface temperature and sea surface height data are assimilated with a sequential method based on the SEEK filter adapted to the coupling needs. The model domain covers the Atlantic from 20°S to 70°N at eddy-permitting resolution. The biogeochemical model is a NPZD-DOM model based on the P3ZD formulation. The results of an annual assimilated simulation are compared with an annual free simulation.With assimilation, the representation of the mixed layer depth is significantly improved in mid latitudes, even though the mixed layer depth is generally overestimated compared to the observations. The representation of the mean and variance of the currents is also significantly improved.The nutrient input in the euphotic zone is used to assess the data assimilation impact on the ecosystem. Data assimilation results in a 50% reduction of the input due to vertical mixing in mid-latitudes, and in a four- to six-fold increase of the advective fluxes in mid-latitudes and subtropics. Averaged zonally, the net impact is a threefold increase for the subtropical gyre, and a moderate (20–30%) decrease at mid and high latitudes.Surface chlorophyll concentration increases along the subtropical gyre borders, but little changes are detected at mid and high latitudes. An increase of the primary production appears along the Gulf Stream path, but it represents only 12% on average for mid and high latitudes. In the subtropical gyre centre, primary production is augmented but stays underestimated (20% of observations). These experiments show the benefits of physical data assimilation in coupled physical–biogeochemical applications.  相似文献   

4.
A real time assimilation and forecasting system for coastal currents is presented. The purpose of the system is to deliver current analyses and forecasts on based on assimilation of high-frequency radar surface current measurements. The local Vessel Traffic Service monitoring the ship traffic to two oil terminals on the coast of Norway received the analyses and forecasts in real time.A new assimilation method based on optimal interpolation is presented where spatial covariances derived from an ocean model are used instead of simplified mathematical formulations. An array of high frequency radar antennae provides the current measurements. A suite of nested ocean models comprises the model system. The observing system is found to yield good analyses and short range forecasts that are significantly improved compared to a model twin without assimilation. The system is fast, analysis and 6-h forecasts are ready at the Vessel Traffic Service 45 min after acquisition of radar measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号