首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
为了研究公众对车路协同系统(CVIS)的接受度以及在性别上的差异,考虑心理因素,基于拓展的技术接受模型建立车路协同系统接受度模型,通过网络问卷调查方法获取车路协同系统接受度影响因素的主观评价数据,使用偏最小二乘法的结构方程模型(PLS-SEM)检验测量模型的内部一致性和可靠性、收敛效度和判别效度以及模型的假设.研究结果...  相似文献   

2.
智能网联汽车是我国战略发展的重点支持领域。车路协同技术是智能网联汽车的重要应用方向和基础支撑。车路协同仿真验证技术是车联网智能化基础设施建设及示范应用开展的重要保 障。  相似文献   

3.
为加快紧急车辆抵达事故现场的速度,同时减少紧急车辆优先权对其他车辆的影响,运用车路协同系统,提出避让紧急车辆协同换道策略,通过调整紧急车辆下游车辆位置,实现紧急车辆高效通过路段。以紧急车辆前车(DV)及其相邻目标车道车辆为控制对象,根据相邻车道车辆间距与车车通信范围,搜索DV可换道空间间隙集。以交通流整体恢复稳定时间最小为目标,确定DV换道轨迹和相邻车道协作车辆的速度变化,引导车辆完成协同合流,既能保障车辆安全换道,还能降低换道造成的速度振荡传递。同时,为快速恢复DV换道造成的目标车道车辆速度波动,对上游车辆(UV)采取先进先出规则的换道控制策略。所提协同避让紧急车辆的策略考虑了车辆协同换道对交通流的整体影响,并在原有换道策略的基础上提出了减少速度波动传递的控制方法。案例分析结果表明:采用上下游协同换道策略最短换道时间为6s,此时紧急车辆距前车78.66 m时发送避让信号。同时研究发现,恢复交通流速度稳定所需的时间为29 s,比未采用上下游协同换道策略降低了34%。  相似文献   

4.
交通状态评价方法能够为交通管理系统提供可量化的实时路网信息,为动态引导交通流、缓解交通拥堵提供依据。受限于交通路网的时变性和评价过程的主观性,目前传统评价方法的精度时常无法满足需求。基于城市车路协同系统动态获取路网信息优势,提出一种利用车路信息融合的实时交通状态评价方法。首先,定义了一种网联汽车与路侧终端间的无线交互方式,并确定数据协议以保证实时车辆数据的准确性;其次,从实时数据中选取平均通过时间、平均停车次数、平均停怠时间作为一级评价指标进行模糊综合,应用多算子对计算的一级评价结果构成二级交通状态评价指标,并根据层次分析法确立指标权重,同时根据仿真和试验结果建立适用于各级道路参数的可变隶属度规则,从而融合动态车辆数据与静态路段参数,计算得出交通状态评价结果与评分;最后,由网联汽车、车载终端、路侧终端和无线通信模块搭建实际协同测试系统对该方法进行了试验验证。试验结果表明:测试系统所得到的路段实时交通状态评价得分与对应的交通状态变化趋势一致,能够准确体现城市车路协同环境下的交通状态特点。该评价方法运用信息融合方法提高了交通状态评价结果的实时性与客观性,同时为车路协同技术应用于实时交通诱导,缓解城市交通拥堵提供了理论依据。  相似文献   

5.
安鑫 《车时代》2021,(1):169-170
随着我国经济和社会的快速发展,作为通往现代化国家建设的重要战略基础设施之一的公路,截至2020年末我国公路总里程已突破510万公里,其中高速公路建设和运营里程已达15万公里。车路协同作为智慧公路建设的关键核心技术之一,对提升智慧公路的安全性具有重要的意义和作用。文章将从安全的角度阐述智慧公路尤其是智慧高速公路与安全行车密切相关的相关场景并进行论述,探索车路协同的应用场景。  相似文献   

6.
随着自动驾驶技术的发展,中国从自身国情及优势出发,明确了车路协同的技术发展路径。文章相较于既有云控平台的设计,明确了以高速公路运营管理单位为服务对象,通过车路协同应用场景梳理,推导云控平台功能架构及技术架构,细化各类数据资源项,明确建议行驶速度阈值,并对应匝道汇入场景,列出关键控制数据项及设备协同控制方法,为提升道路管控能力,实现安全、便捷、高效、绿色、经济的目标,提供切实可行的技术方案。  相似文献   

7.
为了有效减少夜间弯道中的交通事故,本文提出了基于车路协同的自适应车灯控制系统。以公路的停车视距、弯道曲线长度和弯道曲线转角为基础,建立车灯水平转角与路面情况的数学模型。对该模型进行模拟后,结果表明该系统在国家车路协同技术推广中具有广泛的应用前景。  相似文献   

8.
熊文华  胡少鹏  王佩  张杰华 《公路》2022,67(6):218-222
交通基础设施与自动驾驶车辆之间的协同能提高自动驾驶的安全性和可靠性。通过对自动驾驶车辆功能局限性进行分析,找出自动驾驶车辆对路侧交通设施的潜在需求,从功能角度将路侧交通设施分为常规交通管理设施、交通协同设施、基站及网络设施、高精度定位设施及路内服务设施等,构建了车路协同路侧交通设施体系;在此基础上,从路侧设施配套分级设置的角度,提出四级自动驾驶道路分级标准,以及配套路侧设施设置要求,细化完善当前自动驾驶“路端”管理方面的技术要求,为管理部门提供参考。  相似文献   

9.
设计了一种无信号灯的交叉口车辆协调控制策略,该策略将交叉口车辆通行控制问题转化为以最大流量为目标的整数规划问题,通过求解该问题获得最佳的通行策略达到车辆安全高效通过交叉口.与定时控制和自适应控制策略在各种交通负载下的仿真对比表明,所提出的协调控制策略能明显降低交叉口车辆的平均停车等待时间、平均排队长度和停车率.   相似文献   

10.
针对车路协同环境下的冲突问题,建立了以系统反应时间代替驾驶员反应时间的自动驾驶车辆制动距离模型,以此作为安全距离改进了矩形冲突检测模型,并根据轨迹优化的研究思路,提出了以矩形冲突检测模型为基础的冲突消解算法,对非通行优先权车辆进行速度引导,避免车辆冲突。在车联网开源框架 Veins 的基础上,将交通仿真器 SUMO和网络仿真器 OMNeT++双向耦合,并对冲突检测模型与消解模型进行验证。仿真结果显示,该冲突检测及消解模型具有可行性,与传统无信号交叉口四路停车让行规则相比,模型中的速度引导方案能减少合流冲突车辆 8.6%的平均行驶时间,减少交叉冲突车辆 8.3%的平均行驶时间;合流冲突和交叉冲突中车辆的平均速度分别提高了61.4%和105.0%。在实际应用中,冲突消解模型可以为不同速度范围内的自动驾驶车辆提供速度参考,降低无信号交叉口车辆发生碰撞的概率,提高无信号交叉口的通行效率。  相似文献   

11.
为评估智能网联环境下高速公路辅助驾驶车辆编队的效果,首先基于V2X (Vehicle to Everything)和智能驾驶人模型(Intelligent Driver Model,IDM)对网联环境下的车辆跟驰行为进行建模,并对其进行参数校准;其次从安全性评价指标和通行效率两方面构建编队效果评价体系;然后通过VISSIM和VBA联合仿真,改变编队的车道、交通流量、网联车渗透率等变量进行试验。仿真结果表明,网联环境下车辆辅助驾驶编队在不同层面对于安全性与效率性都有提升;最后以不同期望速度在网联环境和非网联环境下分别进行实车辅助驾驶编队试验,以验证评价指标体系以及仿真试验的有效性。其中,实车试验结果显示,期望速度为70 km·h-1时,网联环境下的辅助驾驶编队通行效率比非网联环境提升56%,90 km·h-1时提升37.2%,110 km·h-1时提升39.8%。通过与仿真试验结果对比,表明网联环境下车辆辅助驾驶编队对交通流安全性有一定程度的提升。  相似文献   

12.
基于智慧交通领域的探索及智能网联汽车测试道路项目的实践,对智能网联汽车开放测试道路建设的基本设计原则、设计标准、技术路线、场景设计进行了介绍,提炼了建设方案。对国家和行业相关规范、规程所明确的检测项目及场景要求进行了解析,并明确了道路的4条选线原则,强调智能化改造整体架构应整体遵循“端-边-云”的车路协同体系。针对车联网领域重要的落地场景,具体介绍了6个重点场景的必测项目和选测项目场景设计。对项目在满足智能网联汽车测试需求的同时所产生的显著的社会效益和预期经济效益进行了分析总结。  相似文献   

13.
目前,针对搭载自动驾驶功能的智能网联汽车,国内外正在广泛开展特定设计运行条件下的道路测试、示范应用等工作,其安全测试与评估方法已经成为当前行业研究的热点和难点。从第三方视角出发,重点针对汽车智能化、网联化面临的主要安全风险,将智能网联汽车的安全测试与评估分为基础测评和监测调整两个阶段。在基础测评阶段,综合评估产品对过程保障及测试要求的符合情况;在监测调整阶段,基于对车辆实际安全状态的监测,适时调整安全评估结果。在此基础上,重点梳理了基于场景的测试、安全评估、监测等测评方法的内在逻辑及原则要求。分别阐述了功能安全、预期功能安全、网络安全和数据安全等过程保障方法及主要要求,以及模拟仿真、封闭场地、实际道路、网络安全和数据安全、软件升级、数据记录等测试方法及主要要求。提出的方法为特定设计运行条件下,具有自动驾驶功能的智能网联汽车综合安全评估提供了参考。  相似文献   

14.
|近些年来,智能化网联化发展迅速打造部署智能网联汽车测试场地也就成为了发展智能网联汽车的重点工作任务之一。本文结合国内外典型智能网联汽车测试场地,从设施建设、长远规划、管理服务、特色定位等方面进行分析研究,进而为智能网联汽车测试场地的建设提出一些发展建议。  相似文献   

15.
试验车道选择行为是自动驾驶车辆最基本的决策行为之一,利用车联网技术可以使车道选择结果更加全面、合理.首先,对高速公路自动驾驶车辆车道选择决策过程进行分析,并以车联网感知通信范围内的车辆的平均速度、重车比例及前往车道的理想换道时间为主要指标创建成本函数,根据计算结果输出最优车道序列;然后,以Gipps安全驾驶模型为基础,...  相似文献   

16.
信号交叉口是影响交通系统运行安全和效率的关键。在国家新基建战略的提出以及车路协同技术不断发展的环境下,合理设置网联自动驾驶车辆(Connected and Autonomous Vehicle,CAV)专用进口道,对信号交叉口进口道处不同网联类型的车辆进行科学的交通组织,能够提高交叉口的通行能力,降低行车延误,促进城市交通系统效率与安全的双提升。建立协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型和GM (General Motor)模型分别描述混行环境下网联车辆与非网联车的跟驰行为,以提高进口道通行能力、降低延误和油耗为优化目标,采取敏感度分析方法,提出不同CAV比例、进口道车道数、交通量和信号配时方案组合情况下CAV专用进口道的动态设置条件,适用于不同交通状况的信号交叉口,具有较强的普适性。数值仿真结果表明:采用该方法设置CAV专用进口道能够提高混行信号交叉口的通行能力、降低延误和车均油耗;在实际应用时,可视交叉口类型和交通智能化程度灵活选取CAV专用进口道设置方式,为混行交通流环境下交叉口进口道的交通组织优化提供理论依据和模型支持,对车路协同系统的相关研究具有参考意义。  相似文献   

17.
为了深入分析驾驶模式决策影响因子,通过实车试验采集了人-车-路多源特征信息。用驾驶人主观经验将驾驶模式划分为人工驾驶、警示辅助、自动驾驶3种状态,并利用采集的驾驶人血流量脉冲(BVP)和皮肤电导(SC)值进行K均值聚类,将驾驶人当前合适的驾驶模式自动聚类为3级。通过融合驾驶人自汇报结果和聚类结果对驾驶模式进行准确标定。采用以信息增益为依据的Ranker算法对多特征进行排序,并在此基础上,根据多分类器分级结果确定最优特征属性集合。研究结果表明:当选取车速、车头时距、车道中心距离、前轮转角标准差、驾驶经验5个指标为特征子集时,支持向量机、朴素贝叶斯及K近邻这3种分类器的识别准确率都超过90%;除警示辅助模式与自动驾驶模式下的车速值和车道中心距之外,其余所有不同模式决策属性值均呈显著性差异;研究结果可为人机共驾智能车驾驶模式决策提供依据。  相似文献   

18.
随着中国新基建战略的提出及自动驾驶和网联通信技术的不断发展,网联自动驾驶车辆(CAV)、自动驾驶车辆(AV)和常规人驾车辆混行的交通流将在未来长时间存在.建立适用于网联自动驾驶车辆、自动驾驶车辆和常规人驾车辆3种类型车辆的混流跟驰模型,考虑多前后车车头间距、多前车速度差、加速度差、与主体车辆的相对距离等因素,并进行典型...  相似文献   

19.
传统的车速引导策略考虑交通信号的信号配时(signal phases and timing,SPAT)信息和到下游交叉口的距离,来对车辆进行速度建议和引导,以提高交叉口通行效率、减少能源消耗。但由于通信设备频率的限制,实时诱导效果欠佳。随着车载设备与路侧基础设施通信技术(vehicle to infrastructure,V2I)的发展,能实时、同步地获取交通流的多维信息,研究了1种符合真实驾驶场景的实时变速引导策略。以信号相位时间和道路通行限制条件为约束,构建三阶段变速诱导模型。提出将车辆通过连续路口的车速引导问题分解为车辆通过多个相邻路口的子问题进行求解。针对任意相邻2个交叉口,求解车辆到达下游交叉口的可通行时间区域,并将到达时间区域离散化,计算车辆到达时间区域内的每1个时间节点的能耗。将连续路口车速引导问题转换为速度轨迹寻优问题进行求解,以车辆能耗为权重,采用Dijkstra算法在所有可通行速度轨迹中寻找能耗最小的速度轨迹。利用交通仿真软件SUMO搭建仿真环境,并用Python对SUMO进行二次开发,以武汉市经济开发区东风大道的3个连续路口为研究对象进行仿真验证。实验结果表明:所提车速引导方法在过饱和,饱和、欠饱和流量下,与多级最优策略相比能耗分别减少0.68%,1.64%,3.97%,与匀速策略相比能耗分别减少0.7%,2.60%,9.80%。所提变速诱导方法在不同交通流量情况下均能诱导车辆节能地驶离交叉口,在欠饱和流量下效果最佳。  相似文献   

20.
测试驱动型开发是智能网联汽车技术发展的重要路径,而测试场景作为测试驱动型开发过程的核心要素,需要建立科学合理的建模和分类方法。首先,从应用层面定义了智能网联汽车测试场景的三个评价指标;其次,提出了测试场景评价的三维建模与评价方法;最后,结合具体应用案例分析了测试场景三维评价模型的应用场景。提出的测试场景三维评价模型对智能网联汽车的测试与评价具有重要指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号