首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispatchers in many public transit companies face the daily problem of assigning available buses to bus routes under conditions of bus shortages. In addition to this, weather conditions, crew absenteeism, traffic accidents, traffic congestion and other factors lead to disturbances of the planned schedule. We propose the Bee Colony Optimization (BCO) algorithm for mitigation of bus schedule disturbances. The developed model takes care of interests of the transit operator and passengers. The model reassigns available buses to bus routes and, if it is allowed, the model simultaneously changes the transportation network topology (it shortens some of the planned bus routes) and reassigns available buses to a new set of bus routes. The model is tested on the network of Rivera (Uruguay). Results obtained show that the proposed algorithm can significantly mitigate disruptions.  相似文献   

2.
A predominant observation in Hong Kong is the continuous loss in ferry patronage. There are two main reasons for this: poor level-of-service and better competitors. New roads, bridges, and tunnels are serving the buses, and to some extent the railways; whereas the investment in ferry terminals is relatively at a lower level. On the one hand, there is no need to promote the ferries in a free market environment; but on the other hand, the ferries have the best safety record, can only relieve some traffic congestion and need water access that is one of the characteristics of Hong Kong. The goal of this paper is to design a planning approach combined with an evaluation procedure on how to make the best use of the existing water and pier resources in Hong Kong through the provision of commercially viable ferry services. The approach used covers the impact of future developments planning up to 2006 comprising all public transport modes in Hong Kong (heavy rail, metro, bus, and ferry). The planning tool is based on a newly developed multi-objective evaluation method in order to assess the ferry routes with scientific, practical, and simplified analyses for future use. This assessment is applied to the existing ferry routes and candidate routes and can also be carried out on an individual route basis or on a given set of routes. The objective functions set forth analytically in the evaluation method take into account the interests of the three participants: the passengers, the operators and the government. The proposed ferry network design formulation and the suggested new ferry routes will have a positive impact on changing the ferry system’s image in Hong Kong.  相似文献   

3.
The use of smaller buses offers passengers a better service frequency for a given service capacity, but costs more to operate per seat provided. Within this trade-off there is an optimal bus size which maximises social benefit. A mathematical model is described which can be solved analytically to provide an explicit relationship between optimal bus size and factors such as operating cost, level of demand, and demand elasticities. The model includes: passenger demand varying with the generalised cost of travel according to a constant elasticity; the effect of changes in bus occupancy on average waiting times and on operating speed; the financial constraint that farebox revenue must equal operating cost less subsidy; an allowance for external benefits associated with generated demand, and for the effect of the flow of buses on traffic congestion; and an operating cost increasing linearly with bus size. The optimal size varies with the square root of demand, and with the unit cost to the power of 0.1 to 0.2. It also increases slowly with the proportion of cost covered by subsidy. For typical urban operating conditions in the United Kingdom the optimal size for a monopoly service lies between 55 and 65 seats assuming the observed relationship between cost and size; it is possible that changes in working practices could make smaller buses relatively cheaper to operate, so reducing the optimal size, but it seems unlikely to fall below 40 seats.  相似文献   

4.
Recent research has studied the existence and the properties of a macroscopic fundamental diagram (MFD) for large urban networks. The MFD should not be universally expected as high scatter or hysteresis might appear for some type of networks, like heterogeneous networks or freeways. In this paper, we investigate if aggregated relationships can describe the performance of urban bi-modal networks with buses and cars sharing the same road infrastructure and identify how this performance is influenced by the interactions between modes and the effect of bus stops. Based on simulation data, we develop a three-dimensional vehicle MFD (3D-vMFD) relating the accumulation of cars and buses, and the total circulating vehicle flow in the network. This relation experiences low scatter and can be approximated by an exponential-family function. We also propose a parsimonious model to estimate a three-dimensional passenger MFD (3D-pMFD), which provides a different perspective of the flow characteristics in bi-modal networks, by considering that buses carry more passengers. We also show that a constant Bus–Car Unit (BCU) equivalent value cannot describe the influence of buses in the system as congestion develops. We then integrate a partitioning algorithm to cluster the network into a small number of regions with similar mode composition and level of congestion. Our results show that partitioning unveils important traffic properties of flow heterogeneity in the studied network. Interactions between buses and cars are different in the partitioned regions due to higher density of buses. Building on these results, various traffic management strategies in bi-modal multi-region urban networks can then be integrated, such as redistribution of urban space among different modes, perimeter signal control with preferential treatment of buses and bus priority.  相似文献   

5.
Disruptions in carrying out planned bus schedules occur daily in many public transit companies. Disturbances are often so large that it is necessary to perform re-planning of planned bus and crew activities. Dispatchers in charge of traffic operations must frequently find an answer to the following question in a very short period of time: How should available buses be distributed among bus routes in order to minimize total passengers' waiting time on the network? We propose a model for assigning buses to scheduled routes when there is a shortage of buses. The proposed model is based on the bee colony optimization (BCO) technique. It is a biologically inspired method that explores collective intelligence applied by honey bees during the nectar collecting process. It has been shown that this developed BCO approach can generate high-quality solutions within negligible processing times.  相似文献   

6.
Major emphasis has been placed in recent years on the improvement of the operations of existing transportation facilities, using Transportation Systems Management strategies. Accordingly, preferential treatment of high occupancy vehicles is playing an increasing role in transportation projects. This paper deals with one of these strategies, the priority treatment of buses at signalized intersections. Such treatment is aimed at improving the capacity of intersections. The paper develops an analytical model of delays at signalized intersections under a bus preemption scheme. The analysis is presented for the simplest case, i.e., two intersecting one-way streets. The results suggests that the benefits of bus preemption can be increased by properly adjusting several design parameters such as cycle and phase duration of the preempted phases as well as the non-preempted parameters. The model outlined in this paper is applicable to any situation in which stochastic variation is introduced into the signal cycle as well as to bus preemption. Consequently, other potential applications of the model include the design/analysis of traffic actuated signals, and pedestrian actuated signals.  相似文献   

7.
Singapore has been actively engaged in implementing various land transportation policies and traffic management schemes since the early 1970s to reduce traffic congestion. This paper examines the benefits in energy savings arising from the following five major schemes: (a) the Area Licensing Scheme, (b) the computerised Area Traffic control System, (c) the adaptive traffic control system, (d) the exclusive bus lane scheme, and (e) the island-wide expressway system. The analyses are made based on the findings of a two-year study that developed vehicle fuel consumption models for Singapore traffic. The Area Licensing Scheme that restricts traffic flow into the Central Business District (CBD) is found to have the greatest energy impact, followed by the island-wide expressway system and the traffic-signals control systems within the CBD.  相似文献   

8.
Conventional bus service (with fixed routes and schedules) has lower average cost than flexible bus service (with demand-responsive routes) at high demand densities. At low demand densities flexible bus service has lower average costs and provides convenient door-to-door service. Bus size and operation type are related since larger buses have lower average cost per passenger at higher demand densities. The operation type and other decisions are jointly optimized here for a bus transit system connecting a major terminal to local regions. Conventional and flexible bus sizes, conventional bus route spacings, areas of service zones for flexible buses, headways, and fleet sizes are jointly optimized in multi-dimensional nonlinear mixed integer optimization problems. To solve them, we propose a hybrid approach, which combines analytic optimization with a Genetic Algorithm. Numerical analysis confirms that the proposed method provides near-optimal solutions and shows how the proposed Mixed Fleet Variable Type Bus Operation (MFV) can reduce total cost compared to alternative operations such as Single Fleet Conventional Bus (SFC), Single Fleet Flexible Bus (SFF), Mixed Fleet Conventional Bus (MFC) and Mixed Fleet Flexible Bus (MFF). With consistent system-wide bus sizes, capital costs are reduced by sharing fleets over times and over regions. The sensitivity of results to several important parameters is also explored.  相似文献   

9.
This paper proposes a new dynamic bus control strategy aimed at reducing the negative effects of time-headway variations on route performance, based on real-time bus tracking data at stops. In routes with high demand, any delay of a single vehicle ends up causing an unstable motion of buses and producing the bus bunching phenomena. This strategy controls the cruising speed of buses and considers the extension of the green phase of traffic lights at intersections, when a bus is significantly delayed. The performance of this strategy will be compared to the current static operation technique based on the provision of slack times at holding points. An operational model is presented in order to estimate the effects of each controlling strategy, taking into account the vehicle capacity constraint. Control strategies are assessed in terms of passenger total travel time, operating cost as well as on the coefficient of headway variation. The effects of controlling strategies are tested in an idealized bus route under different operational settings and in the bus route of highest demand in Barcelona by simulation. The results show that the proposed dynamic controlling strategy reduces total system cost (user and agency) by 15–40% as well as the coefficient of headway variation 53–78% regarding the uncontrolled case, providing a bus performance similar to the expected when time disturbance is not presented.  相似文献   

10.
This paper presents a cost-benefit analysis (CBA) of hybrid and electric city buses in fleet operation. The analysis is founded on an energy consumption analysis, which is carried out on the basis of extensive simulations in different bus routes. A conventional diesel city bus is used as a reference for the CBA. Five different full size hybrid and electric city bus configurations were considered in this study; two parallel and two series hybrid buses, and one electric city bus. Overall, the simulation results indicate that plug-in hybrid and electric city buses have the best potential to reduce energy consumption and emissions. The capital and energy storage system costs of city buses are the most critical factors for improving the cost-efficiency of these alternative city bus configurations. Furthermore, the operation schedule and route planning are important to take into account when selecting hybrid and electric city buses for fleet operation.  相似文献   

11.
A number of studies have shown that in addition to travel time and cost as the common influences on mode, route and departure time choices, travel time variability plays an increasingly important role, especially in the presence of traffic congestion on roads and crowding on public transport. The dominant focus of modelling and implementation of optimal pricing that incorporates trip time variability has been in the context of road pricing for cars. The main objective of this paper is to introduce a non-trivial extension to the existing literature on optimal pricing in a multimodal setting, building in the role of travel time variability as a source of disutility for car and bus users. We estimate the effect of variability in travel time and bus headway on optimal prices (i.e., tolls for cars and fares for buses) and optimal bus capacity (i.e., frequencies and size) accounting for crowding on buses, under a social welfare maximisation framework. Travel time variability is included by adopting the well-known mean–variance model, using an empirical relationship between the mean and standard deviation of travel times. We illustrate our model with an application to a highly congested corridor with cars, buses and walking as travel alternatives in Sydney, Australia. There are three main findings that have immediate policy implications: (i) including travel time variability results in higher optimal car tolls and substantial increases in toll revenue, while optimal bus fares remain almost unchanged; (ii) when bus headways are variable, the inclusion of travel time variability as a source of disutility for users yields higher optimal bus frequencies; and (iii) including both travel time variability and crowding discomfort leads to higher optimal bus sizes.  相似文献   

12.
Many transit systems outside North America are characterized by networks with extensively overlapping routes and buses frequently operating at, or close to, capacity. This paper addresses the problem of allocating a fleet of buses between routes in this type of system; a problem that must be solved recurrently by transit planners. A formulation of the problem is developed which recognizes passenger route choice behavior, and seeks to minimize a function of passenger wait time and bus crowding subject to constraints on the number of buses available and the provision of enough capacity on each route to carry all passengers who would select it. An algorithm is developed based on the decomposition of the problem into base allocation and surplus allocation components. The base allocation identifies a feasible solution using an (approx.) minimum number of buses. The surplus allocation is illustrated for the simple objective of minimizing the maximum crowding level on any route. The bus allocation procedure developed in this paper has been applied to part of the Cairo bus system in a completely manual procedure, and is proposed to be the central element of a short-range bus service planning process for that city.  相似文献   

13.
Upon having loaded and unloaded their passengers, buses are often free to exit a multi-berth bus stop without delay. A bus need not wait to perform this exit maneuver, even if it requires circumventing one or more other buses that are still dwelling in the stop’s downstream berths. Yet, many jurisdictions impose restrictions on bus entry maneuvers into a stop to limit disruptions to cars and other buses. Buses are typically prohibited from entering a stop whenever this would require maneuvering around other buses still dwelling in upstream berths. An entering bus is instead required to wait in queue until the upstream berths are vacated.Analytical models are formulated to predict how bus discharge flows from busy, multi-berth stops are affected by allowing buses to freely exit, but not freely enter berths. These models apply when: a bus queue is always present at the stop’s entrance; buses depart the entry queue and enter the stop as per the restriction described above; and the stop is isolated from the effects of nearby traffic signals and other bus stops. We find that for these restricted-entry stops, bus-carrying capacities can often be improved by regulating the exit maneuvers as well. This turns out to be particularly true when the stop’s number of berths is large. Simulations show that these findings still hold when a stop is only moderately busy with entry queues that persist for much, but not all of the time. The simulations also indicate that removing any restrictions on bus exit maneuvers is almost always productive when stops are not busy, such that short entry queues form only on occasion, and only for short periods. We argue why certain simple policies for regulating exit maneuvers would likely enhance bus-stop discharge flows.  相似文献   

14.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A brief transit strike in early December 1976 disrupted bus services to the city of Pittsburgh and surrounding Allegheny County. That strike provided an opportunity for testing a variety of approaches to increase ride-sharing and to reduce traffic congestion, and for examining the effect of the strike on traffic congestion and on individual travel behavior. Even though over 60% of the commuters to the CBD use transit, the effects of the strike were relatively mild. There was some increase in traffic flow into the CBD and some spreading of the peak period. The largest proportion of the transit commuters who made trips to the CBD during the strike were dropped off by a non-commuter, increasing highway traffic. The most severe impact was felt by those transit commuters who had no cars in the household; 25% of these commuters (only 3% of the total CBD commuters) stayed home from work on the first day of the strike. Most attempts to mitigate the impact of the strike had little effect, largely because most commuters were able to manage adequately during the short strike. The anticipated parking problem, on which much of the contingency planning was focused, did not emerge, largely because of the use of carpooling and drop-off mode by many of the transit users.  相似文献   

16.
Fare evasion is a problem in many public transport systems around the world and policies to reduce it are generally aimed at improving control and increasing fines. We use an econometric approach to attempt explaining the high levels of evasion in Santiago, Chile, and guide public policy formulation to reduce this problem. In particular, a negative binomial count regression model allowed us to find that fare evasion rates on buses increase as: (i) more people board (or alight) at a given bus door, (ii) more passengers board by a rear door, (iii) buses have higher occupancy levels (and more doors) and (iv) passengers experience longer headways. By controlling these variables (ceteris paribus), results indicate that evasion is greater during the afternoon and evening, but it is not clear that it is higher during peak hours. Regarding socioeconomic variables, we found that fare evasion at bus stops located in higher income areas (municipalities) is significantly lower than in more deprived areas. Finally, based on our results we identified five main methods to address evasion as alternatives to more dedicated fine enforcement or increased inspection; (i) increasing the bus fleet, (ii) improving the bus headway regularity, (iii) implementing off-board payment stations, (iv) changing the payment system on board and (v) changing the bus design (number of doors or capacity). Our model provides a powerful tool to predict the reduction of fare evasion due to the implementation of some of these five operational strategies, and can be applied to other bus public transport systems.  相似文献   

17.
In the area of active traffic management, new technologies provide opportunities to improve the use of current infrastructure. Vehicles equipped with in-car communication systems are capable of exchanging messages with the infrastructure and other vehicles. This new capability offers many opportunities for traffic management. This paper presents a novel merging assistant strategy that exploits the communication capabilities of intelligent vehicles. The proposed control requires the cooperation of equipped vehicles on the main carriageway in order to create merging gaps for on-ramp vehicles released by a traffic light. The aim is to reduce disruptions to the traffic flow created by the merging vehicles. This paper focuses on the analytical formulation of the control algorithm, and the traffic flow theories used to define the strategy. The dynamics of the gap formation derived from theoretical considerations are validated using a microscopic simulation. The validation indicates that the control strategy mostly developed from macroscopic theory well approximates microscopic traffic behaviour. The results present encouraging capabilities of the system. The size and frequency of the gaps created on the main carriageway, and the space and time required for their creation are compatible with a real deployment of the system. Finally, we summarise the results of a previous study showing that the proposed merging strategy reduces the occurrence of congestion and the number of late-merging vehicles. This innovative control strategy shows the potential of using intelligent vehicles for facilitating the merging manoeuvre through use of emerging communications technologies.  相似文献   

18.
Optimizing bus-size and headway in transit networks   总被引:1,自引:0,他引:1  
Optimization models for calculating the best size for passenger carrying vehicles in urban areas were popular during the 1980s. These studies were abandoned in the ‘90s concluding that it was more efficient to use smaller buses at higher frequencies. This article returns to this controversial question, starting from the point of view that any calculation of bus size can only be made after considering the demand for each of the routes on the system. Therefore, an optimization model for sizing the buses and setting frequencies on each route in the system is proposed in accordance with the premises detailed below. The proposed model is a bi-level optimization model with constraints on bus capacity. The model allows buses of different sizes to be assigned to public transport routes optimizing the headways on each route in accordance with observed levels of demand. At the upper level the model considers the optimization of the system’s social and operating costs, these are understood to be the sum of the user’s and operator’s costs. At the lower level there is an assignment model for public transport with constraints on vehicle capacity which balances the flows for bus sizes and headways at each iteration. By graphically representing the results of the model applied to a real case, a series of useful conclusions are reached for the management and planning of a fleet of public transport vehicles.  相似文献   

19.
A multimodal, multiclass stochastic dynamic traffic assignment model was developed to evaluate pre‐trip and enroute travel information provision strategies. Three different information strategies were examined: user optimum [UO], system optimum [SO] and mixed optimum [MO]. These information provision strategies were analyzed based on the levels of traffic congestion and market penetration rate for the information equipment. Only two modes, bus and car, were used for evaluating and calculating the modal split ratio. Several scenarios were analyzed using day‐to‐day and within day dynamic models. From the results analyzed, it was found that when a traffic manager provides information for drivers using the UO strategy and drivers follow the provided information absolutely, the total travel time may increases over the case with no information. Such worsening occurs when drivers switch their routes and face traffic congestion on the alternative route. This phenomenon is the 'Braess Paradox'.  相似文献   

20.
In this paper, a person-capacity-based optimization method for the integrated design of lane markings, exclusive bus lanes, and passive bus priority signal settings for isolated intersections is developed. Two traffic modes, passenger cars and buses, have been considered in a unified framework. Person capacity maximization has been used as an objective for the integrated optimization method. This problem has been formulated as a Binary Mixed Integer Linear Program (BMILP) that can be solved by a standard branch-and-bound routine. Variables including, allocation of lanes for different passenger car movements (e.g., left turn lanes or right turn lanes), exclusive bus lanes, and passive bus priority signal timings can be optimized simultaneously by the proposed model. A set of constraints have been set up to ensure feasibility and safety of the resulting optimal lane markings and signal settings. Numerical examples and simulation results have been provided to demonstrate the effectiveness of the proposed person-capacity-based optimization method. The results of extensive sensitivity analyses of the bus ratio, bus occupancy, and maximum degree of saturation of exclusive bus lanes have been presented to show the performance and applicable domain of the proposed model under different composition of inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号