首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
Vehicle speed profile is a fundamental data support for calculating vehicular emission using the micro-emission model. However, achieving accuracy and breadth for the speed profile estimation is difficult. This study proposes a new vehicle speed profile estimation model using license plate recognition (LPR) data. This model allows speed profile estimation of every individual vehicle between two consecutive intersections. A systematic LPR data-mending method is developed to infer the information of unmatched vehicles. Using the complete arrival and departure information as boundary conditions, a customized car-following model combined with dummy-overtaking hypothesis and boundary constraints is then applied to estimate the speed profile of vehicles. The proposed model is validated using ground truth speed information from a field experiment conducted in Langfang City in China. Results show that the model can fully capture the pattern of ground truth speed profile. A complementary model validation using the Next Generation Simulation dataset and a model application for calculating emissions are also conducted. The numerical results indicate the effectiveness of the proposed model in estimating vehicle speed profile and emissions.  相似文献   

2.
License plate restriction (LPR) policies are currently being implemented in major Chinese cities with the aim of mitigating traffic congestions. Meanwhile, much controversy regarding the effectiveness of the LPR policies is arising. To better understand the impact of the LPR policies, this paper studies commuters’ acceptance of and behavior reactions to the policies after their implementation. A theoretical model was proposed as the first step, followed by a questionnaire survey that was conducted in Tianjin, China, where an LPR policy has been in place since March 2014. Car owners frequently commuting within the restricted area were sampled as respondents, and a multi-variable regression method was employed to analyze the collected survey data. The results indicate that it is necessary to promote public’s acceptance of the LPR policy, because lower acceptance will lead to more negative reactions towards the policy, which may weaken its effectiveness. Main factors affecting the level of acceptance of the policy are also found, which may serve as a reference for transportation authorities seeking to increase commuters’ acceptance of the policy. These findings are beneficial to designing and implementing LPR policies.  相似文献   

3.
Large ports are seeking innovative logistical ways to improve their competitiveness world-wide. This article proposes waterborne AGVs, inspired by conventional automated guided vehicles and autonomous surface vessels, for transport over water. A predictive path following with arrival time awareness controller is proposed for such waterborne AGVs. The controller is able to achieve smooth tracking and energy efficiency with arrival time awareness for transport oriented applications. Tracking errors are conveniently formulated with vessel dynamics modeled in connected reference path coordinate systems and a coordinate transformation at switching coordinate systems. Binary decision variables and logic constraints based on an along-track state are proposed for modeling switches in the framework of Model Predictive Control (MPC) so that overshoots are avoided. Moreover, timing-aware along-track references are generated by a two-level double integrator scheme. The lower level is embedded in online MPC optimizations for smooth tracking. The higher level solves a mixed-integer quadratic programming problem considering distance-to-go and time-to-go before each MPC optimization. References over the next prediction horizon are generated being aware of the requirements on arrival time. Furthermore, successive linearizations of nonlinear vessel dynamics about a shifted previous optimal system trajectory are implemented to maintain a trade-off between computational complexity and optimality. Simulation results of two industrially relevant Inter Terminal Transport case studies illustrate the effectiveness of the proposed modeling and control design for waterborne AGVs.  相似文献   

4.
Carpooling has been considered a solution for alleviating traffic congestion and reducing air pollution in cities. However, the quantification of the benefits of large-scale carpooling in urban areas remains a challenge due to insufficient travel trajectory data. In this study, a trajectory reconstruction method is proposed to capture vehicle trajectories based on citywide license plate recognition (LPR) data. Then, the prospects of large-scale carpooling in an urban area under two scenarios, namely, all vehicle travel demands under real-time carpooling condition and commuter vehicle travel demands under long-term carpooling condition, are evaluated by solving an integer programming model based on an updated longest common subsequence (LCS) algorithm. A maximum weight non-bipartite matching algorithm is introduced to find the optimal solution for the proposed model. Finally, road network trip volume reduction and travel speed improvement are estimated to measure the traffic benefits attributed to carpooling. This study is applied to a dataset that contains millions of LPR data recorded in Langfang, China for 1 week. Results demonstrate that under the real-time carpooling condition, the total trip volumes for different carpooling comfort levels decrease by 32–49%, and the peak-hour travel speeds on most road segments increase by 5–40%. The long-term carpooling relationship among commuter vehicles can reduce commuter trips by an average of 30% and 24% in the morning and evening peak hours, respectively, during workdays. This study shows the application potential and promotes the development of this vehicle travel mode.  相似文献   

5.
Truck flow patterns are known to vary by season and time-of-day, and to have important implications for freight modeling, highway infrastructure design and operation, and energy and environmental impacts. However, such variations cannot be captured by current truck data sources such as surveys or point detectors. To facilitate development of detailed truck flow pattern data, this paper describes a new truck tracking algorithm that was developed to estimate path flows of trucks by adopting a linear data fusion method utilizing weigh-in-motion (WIM) and inductive loop point detectors. A Selective Weighted Bayesian Model (SWBM) was developed to match individual vehicles between two detector locations using truck physical attributes and inductive waveform signatures. Key feature variables were identified and weighted via Bayesian modeling to improve vehicle matching performance. Data for model development were collected from two WIM sites spanning 26 miles in California where only 11 percent of trucks observed at the downstream site traversed the whole corridor. The tracking model showed 81 percent of correct matching rate to the trucks declared as through trucks from the algorithm. This high accuracy showed that the tracking model is capable of not only correctly matching through vehicles but also successfully filtering out non-through vehicles on this relatively long distance corridor. In addition, the results showed that a Bayesian approach with full integration of two complementary detector data types could successfully track trucks over long distances by minimizing the impacts of measurement variations or errors from the detection systems employed in the tracking process. In a separate case study, the algorithm was implemented over an even longer 65-mile freeway section and demonstrated that the proposed algorithm is capable of providing valuable insights into truck travel patterns and industrial affiliation to yield a comprehensive truck activity data source.  相似文献   

6.
Literature has shown potentials of Connected/Cooperative Automated Vehicles (CAVs) in improving highway operations, especially on roadway capacity and flow stability. However, benefits were also shown to be negligible at low market penetration rates. This work develops a novel adaptive driving strategy for CAVs to stabilise heterogeneous vehicle strings by controlling one CAV under vehicle-to-infrastructure (V2I) communications. Assumed is a roadside system with V2I communications, which receives control parameters of the CAV in the string and estimates parameters imperfectly of non-connected automated vehicles. It determines the adaptive control parameters (e.g. desired time gap and feedback gains) of the CAV if a downstream disturbance is identified and sends them to the CAV. The CAV changes its behaviour based on the adaptive parameters commanded by the roadside system to suppress the disturbance.The proposed adaptive driving strategy is based on string stability analysis of heterogeneous vehicle strings. To this end, linearised vehicle dynamics model and control law are used in the controller parametrisation and Laplace transform of the speed and gap error dynamics in time domain to frequency domain enables the determination of sufficient string stability criteria of heterogeneous strings. The analytical string stability conditions give new insights into automated vehicular string stability properties in relation to the system properties of time delays and controller design parameters of feedback gains and desired time gap. It further allows the quantification of a stability margin, which is subsequently used to adapt the feedback control gains and desired time gap of the CAV to suppress the amplification of gap and speed errors through the string.Analytical results are verified via systematic simulation of both homogeneous and heterogeneous strings. Simulation demonstrates the predictive power of the analytical string stability conditions. The performance of the adaptive driving strategy under V2I cooperation is tested in simulation. Results show that even the estimation of control parameters of non-connected automated vehicles are imperfect and there is mismatch between the model used in analytical derivation and that in simulation, the proposed adaptive driving strategy suppresses disturbances in a wide range of situations.  相似文献   

7.
Due to the loss of vehicle directional stability in emergency maneuvers, a new complete desired model for vehicle handling based on the linear two-degrees-of-freedom (2DOF) model and tire/road conditions is presented to be tracked by the direct yaw moment control (DYC) system. In order to maintain the vehicle actual motions, yaw rate and side-slip angle, close to the proposed desired responses without excessively large external yaw moment, a complete linear quadratic (LQ) optimal problem is formulated and its analytical solution is obtained. Here, the derived control law is evaluated and its different versions are discussed. It is shown that the side-slip tracking by DYC is more effective than the yaw rate control to stabilize vehicle motions in nonlinear regimes. Also, optimal property of the control law provides the possibility of reducing the external yaw moment as low as possible, at the cost of some admissible tracking errors. Simulation studies of vehicle handling, with and without control, have been conducted using a full nonlinear vehicle dynamic model. The results, obtained during various maneuvers, indicate that when the proposed optimal controller is engaged with the model, improvements in the handling performance through a reduced external yaw moment can be acquired.  相似文献   

8.
License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival–departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications.  相似文献   

9.
While safety is one of the most critical contributions of Cooperative Adaptive Cruise Control (CACC), it is impractical to assess such impacts in a real world. Even with simulation, many factors including vehicle dynamics, sensor errors, automated vehicle control algorithms and crash severity need to be properly modeled. In this paper, a simulation platform is proposed which explicitly features: (i) vehicle dynamics; (ii) sensor errors and communication delays; (iii) compatibility with CACC controllers; (iv) state-of-the-art predecessor leader following (PLF) based cooperative adaptive cruise control (CACC) controller; and (v) ability to quantify crash severity and CACC stability. The proposed simulation platform evaluated the CACC performance under normal and cybersecurity attack scenarios using speed variation, headway ratio, and injury probability. The first two measures of effectiveness (MOEs) represent the stability of CACC platoon while the injury probability quantifies the severity of a crash. The proposed platform can evaluate the safety performance of CACC controllers of interest under various paroxysmal or extreme events. It is particularly useful when traditional empirical driver models are not applicable. Such situations include, but are not limited to, cyber-attacks, sensor failures, and heterogeneous traffic conditions. The proposed platform is validated against data collected from real field tests and tested under various cyber-attack scenarios.  相似文献   

10.
With trajectory data, a complete microscopic and macroscopic picture of traffic flow operations can be obtained. However, trajectory data are difficult to observe over large spatiotemporal regions—particularly in urban contexts—due to practical, technical and financial constraints. The next best thing is to estimate plausible trajectories from whatever data are available. This paper presents a generic data assimilation framework to reconstruct such plausible trajectories on signalized urban arterials using microscopic traffic flow models and data from loops (individual vehicle passages and thus vehicle counts); traffic control data; and (sparse) travel time measurements from whatever source available. The key problem we address is that loops suffer from miss- and over-counts, which result in unbounded errors in vehicle accumulations, rendering trajectory reconstruction highly problematic. Our framework solves this problem in two ways. First, we correct the systematic error in vehicle accumulation by fusing the counts with sparsely available travel times. Second, the proposed framework uses particle filtering and an innovative hierarchical resampling scheme, which effectively integrates over the remaining error distribution, resulting in plausible trajectories. The proposed data assimilation framework is tested and validated using simulated data. Experiments and an extensive sensitivity analysis show that the proposed method is robust to errors both in the model and in the measurements, and provides good estimations for vehicle accumulation and vehicle trajectories with moderate sensor quality. The framework does not impose restrictions on the type of microscopic models used and can be naturally extended to include and estimate additional trajectory attributes such as destination and path, given data are available for assimilation.  相似文献   

11.
This paper describes a software system designed to manage the deployment of a fleet of demand-responsive passenger vehicles such as taxis or variably routed buses. Multiple modes of operation are supported both for the fleet and for individual vehicles. Booking requests can be immediate (i.e. with zero notice) or in advance of travel. An initial implementation is chosen for each incoming request, subject to time-window and other constraints, and with an objective of minimising additional travel time or maximising a surrogate for future fleet capacity. This incremental insertion scheme is supplemented by post-insert improvement procedures, a periodically executed steepest-descent improvement procedure applied to the fleet as a whole, and a “rank-homing” heuristic incorporating information about future patterns of demand. A simple objective for trip-insertion and other scheduling operations is based on localised minimisation of travel time, while an alternative incorporating occupancy ratios has a more strategic orientation. Apart from its scheduling functions, the system includes automated vehicle dispatching procedures designed to achieve a favourable combination of customer service and efficiency of vehicle deployment. Provision is made for a variety of contingencies, including travel slower or faster than expected, unexpected vehicle locations, vehicle breakdowns and trip cancellations. Simulation tests indicate that the improvement procedures yield substantial efficiencies over more naı̈ve scheduling methods and that the system will be effective in real-time applications.  相似文献   

12.
13.
Estimation of origin-destination (OD) matrices from link count data is a challenging problem because of the highly indeterminate relationship between the observations and the latent route flows. Conversely, estimation is straightforward if we observe the path taken by each vehicle. We consider an intermediate problem of increasing practical importance, in which link count data is supplemented by routing information for a fraction of vehicles on the network. We develop a statistical model for these combined data sources and derive some tractable normal approximations thereof. We examine likelihood-based inference for these normal models under the assumption that the probability of vehicle tracking is known. We show that the likelihood theory can be non-standard because of boundary effects, and provide conditions under which such irregular behaviour will be observed in practice. For regular cases we outline connections with existing generalised least squares methods. We then consider estimation of OD matrices under estimated and/or misspecified models for the probability of vehicle tracking. Theoretical developments are complemented by simulation experiments and an illustrative example using a section of road network from the English city of Leicester.  相似文献   

14.
This paper presents new models for multiple depot vehicle scheduling problem (MDVS) and multiple depot vehicle scheduling problem with route time constraints (MDVSRTC). The route time constraints are added to the MDVS problem to account for the real world operational restrictions such as fuel consumption. Compared to existing formulations, this formulation decreases the size of the problem by about 40% without eliminating any feasible solution. It also presents an exact and two heuristic solution procedures for solving the MDVSRTC problem. Although these methods can be used to solve medium size problems in reasonable time, real world applications in large cities require that the MDVSRTC problem size be reduced. Two techniques are proposed to decrease the size of the real world problems. For real-world application, the problem of bus transit vehicle scheduling at the mass transit administration (MTA) in Baltimore is studied. The final results of model implementation are compared to the MTA's schedules in January 1998. The comparison indicates that, the proposed model improves upon the MTA schedules in all respects. The improvements are 7.9% in the number of vehicles, 4.66% in the operational time and 5.77% in the total cost.  相似文献   

15.
This paper proposes a sensor location model to identify a sensor configuration that minimizes overall freeway performance monitoring errors while considering the consequences of probabilistic sensor failures. To date, existing sensor location models for freeway monitoring inherently assume that either deployed sensors never fail or the consequences of sensor failure are trivial matters. However, history has revealed that neither assumption is realistic, suggesting that ignoring failures in sensor allocation models may actually produce a significantly suboptimal configuration in the real world. Our work addresses this dilemma by developing a probabilistic optimization model that will minimize the error expectation by examining all possible failure scenarios, each with an occurrence probability. To ensure the scenario completeness and uniqueness, a sensor failure scenario is represented by using a binary string with 1 indicating an operational sensor at a given site and 0 for sensor failure or no sensor deployed. When applied to a case study network, it is shown that an optimal configuration that considers sensor failure is significantly different from an optimal configuration that ignores sensor failure, revealing that sensor failures pose non-trivial consequences on performance monitoring accuracy.  相似文献   

16.
Due to their complementary characteristics, Global Positioning System (GPS) is integrated with standalone navigation devices like odometers and inertial measurement units (IMU). Recently, intensive research has focused on utilizing Micro-Electro-Mechanical-System (MEMS) grade inertial sensors in the integration because of their low-cost. In this study, a low cost reduced inertial sensor system (RISS) is considered. It consists of a MEMS-grade gyroscope and the vehicle built-in odometer. The system works together with GPS to provide 2D navigation for land vehicles. With adequate accuracy, Kalman filter (KF) is the commonly used estimation technique to achieve the data fusion of GPS and inertial sensors in case of high-end IMUs. However, due to the inherent error characteristics of MEMS grade devices, MEMS-based RISS suffers from the non-stationary stochastic sensor errors and nonlinear inertial errors, which cannot be handled by KF and its linear error models. To overcome the problem, Fast Orthogonal Search (FOS), a nonlinear system identification technique, is suggested for modeling the higher order RISS errors. As a general-purpose numerical method, FOS algorithm has the ability to figure out the system nonlinearity efficiently with a tolerance of arbitrary stochastic system noise. Even using online short-term training data, this method is still able to build an accurate nonlinear model that predicts the system dynamics. Motivated by the above merits, an augmented KF/FOS module is proposed by cascading FOS algorithm to a traditional KF structure. By estimating and reducing both linear and nonlinear RISS errors, the proposed method is supposed to offer substantial enhancement on the positioning accuracy of MEMS-based RISS during GPS outages. In order to examine the effectiveness of the proposed technique, the KF/FOS module is applied on the low cost RISS together with GPS in a land vehicle for several road test trajectories. The performance of the proposed method is compared to KF-only solution, both assessed with respect to a reference offered by a high-end solution. The experimental results confirm that KF/FOS module outperforms KF-only method. The results also show the applicability of the proposed method for real-time vehicle applications.  相似文献   

17.
Abstract

This paper explores the possibility of detecting certain movements of vehicles that might provide useful information for crime investigations. It is known that existing car following models are interested in microscopic interactions between vehicles in randomly formed pairs. The present work, however, introduces the concept of macroscopic analysis of vehicle positions on a network and the idea of seeking if these movements exhibit any meaningful relationships. First of all detection algorithms are produced for two possible types of detection: (a) was a particular vehicle followed by any vehicle? and (b) did a particular vehicle follow any vehicle? These algorithms assume that every link in the network is equipped with some sort of vehicle identification or tracking device and the identities of all vehicles, such as their number plates, are fed into the program. Then a simulation program is developed to implement the first algorithm (Type (a)), as an example, to visualise the concept. Since the present paper is a preliminary and basic approach to the problem, a number of issues and details requiring further research, together with the directions which could be taken, are also identified and discussed.  相似文献   

18.
19.
20.
Connected vehicle environment provides the groundwork of future road transportation. Researches in this area are gaining a lot of attention to improve not only traffic mobility and safety, but also vehicles’ fuel consumption and emissions. Energy optimization methods that combine traffic information are proposed, but actual testing in the field proves to be rather challenging largely due to safety and technical issues. In light of this, a Hardware-in-the-Loop-System (HiLS) testbed to evaluate the performance of connected vehicle applications is proposed. A laboratory powertrain research platform, which consists of a real engine, an engine-loading device (hydrostatic dynamometer) and a virtual powertrain model to represent a vehicle, is connected remotely to a microscopic traffic simulator (VISSIM). Vehicle dynamics and road conditions of a target vehicle in the VISSIM simulation are transmitted to the powertrain research platform through the internet, where the power demand can then be calculated. The engine then operates through an engine optimization procedure to minimize fuel consumption, while the dynamometer tracks the desired engine load based on the target vehicle information. Test results show fast data transfer at every 200 ms and good tracking of the optimized engine operating points and the desired vehicle speed. Actual fuel and emissions measurements, which otherwise could not be calculated precisely by fuel and emission maps in simulations, are achieved by the testbed. In addition, VISSIM simulation can be implemented remotely while connected to the powertrain research platform through the internet, allowing easy access to the laboratory setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号