首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Vehicular networks represent a research area of significant importance in improving the safety, efficiency and sustainability of transportation systems. One of the key research problems in vehicular networks is real-time data dissemination, which is crucial to the satisfactory performance of many emergent applications providing real-time information services in vehicular networks. Specifically, the two issues need to be addressed in this problem are maintenance of temporal data freshness and timely dissemination of data. Most existing works only considered periodical data update via backbone wired networks in maintaining temporal data freshness. However, many applications rely on passing vehicles to upload their collected information via wireless network, which imposes new challenges as the uplink data update will have to compete with the downlink data dissemination for the limited wireless bandwidth. With such observations, we propose a temporal information service system, in which vehicles are able to collect up-to-date temporal information and upload them to the roadside units (RSU) along their trajectories. Meanwhile, RSU can disseminate its available data items to vehicles based on their specific requests. Particularly, in this paper, we first quantitatively analyze the freshness of temporal data and propose a mathematical model to evaluate the usefulness of the temporal data. Next, we give the formulation of the proposed real-time and temporal information service (RTIS) problem, and prove the NP-hardness of this problem by constructing a polynomial-time reduction from 0–1 knapsack problem. Subsequently, we establish a probabilistic model to theoretically analyze the tradeoff between timely temporal data update and requested data dissemination sharing a common communication resource, which provides a deeper insight of the proposed RTIS. Further, a heuristic algorithm, namely adaptive update request scheduling (AURS), is designed to enhance the efficacy of RTIS by synthesizing the broadcast effect, the real-time service requirement and the service quality in making scheduling decisions. The computational complexity and scalability analysis of AURS is also discussed. Last but not least, a simulation model is implemented and a comprehensive performance evaluation has been carried out to demonstrate the superiority of ARUS against several state-of-the-art approaches in a variety of application scenarios.  相似文献   

2.
The cooperative vehicle-infrastructure technologies have enabled vehicles to collect and exchange traffic information in real time. Therefore, it is possible to use Vehicular Ad-hoc NETworks (VANETs) for detecting traffic congestion on urban expressways. However, because of the special topology of urban expressways (consisting of both major and auxiliary roadways), the existing traffic congestion detection methods using VANETs do not work very well. In addition, the existing dissemination methods of congestion information lack the necessary control mechanism, so the information may be disseminated to irrelevant geographical areas. This paper proposes a congestion detection and notification scheme using VANETs for urban expressways. The scheme adopts a simplified Doppler frequency shift method to estimate and differentiate traffic conditions for major and auxiliary roadways. Vehicular cooperation and human cognition are introduced to improve the estimation accuracy and to describe the overall traffic conditions. Additionally, the scheme develops a spatial–temporal effectiveness model based on the potential energy theory to control the dissemination area and survival time of the congestion information. Meanwhile, the proposed scheme uses several broadcast control mechanisms to alleviate vehicular network congestion. Simulations through TransModeler indicate that our scheme ensures the accuracy of the estimation of congestion degree. Consequently, the scheme can provide effective references for driving decision-making and path-planning.  相似文献   

3.
This paper presents a Bayesian inference-based dynamic linear model (DLM) to predict online short-term travel time on a freeway stretch. The proposed method considers the predicted freeway travel time as the sum of the median of historical travel times, time-varying random variations in travel time, and a model evolution error, where the median is employed to recognize the primary travel time pattern while the variation captures unexpected supply (i.e. capacity) reduction and demand fluctuations. Bayesian forecasting is a learning process that revises sequentially the state of a priori knowledge of travel time based on newly available information. The prediction result is a posterior travel time distribution that can be employed to generate a single-value (typically but not necessarily the mean) travel time as well as a confidence interval representing the uncertainty of travel time prediction. To better track travel time fluctuations during non-recurrent congestion due to unforeseen events (e.g., incidents, accidents, or bad weather), the DLM is integrated into an adaptive control framework that can automatically learn and adjust the system evolution noise level. The experiment results based on the real loop detector data of an I-66 segment in Northern Virginia suggest that the proposed method is able to provide accurate and reliable travel time prediction under both recurrent and non-recurrent traffic conditions.  相似文献   

4.
Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.  相似文献   

5.
Nowadays, new mobility information can be derived from advanced traffic surveillance systems that collect updated traffic measurements, both in fixed locations and over specific corridors or paths. Such recent technological developments point to challenging and promising opportunities that academics and practitioners have only partially explored so far.The paper looks at some of these opportunities within the Dynamic Demand Estimation problem (DDEP). At first, data heterogeneity, accounting for different sets of data providing a wide spatial coverage, has been investigated for the benefit of off-line demand estimation. In an attempt to mimic the current urban networks monitoring, examples of complex real case applications are being reported where route travel times and route choice probabilities from probe vehicles are exploited together with common link traffic measurements.Subsequently, on-line detection of non-recurrent conditions is being recorded, adopting a sequential approach based on an extension of the Kalman Filter theory called Local Ensemble Transformed Kalman Filter (LETKF).Both the off-line and the on-line investigations adopt a simulation approach capable of capturing the highly nonlinear dependence between the travel demand and the traffic measurements through the use of dynamic traffic assignment models. Consequently, the possibility of using collected traffic information is enhanced, thus overcoming most of the limitations of current DDEP approaches found in the literature.  相似文献   

6.
Recently, real-time monitoring of Dangerous Goods Transport has drawn a lot of attention, thanks to its capability to provide a better visibility on dynamically moving vehicles, particularly through a Web Mapping application. Yet, one of the challenges to be faced designing such a system is an effective architecture for real-time collection of telemetry and event data conveyed by the vehicle on-board system, such the Global Positioning System coordinates. In this paper, we have focused on optimizing the process for managing a large quantity of data transmitted via network sockets that use the Transmission Control Protocol. Then we prove the process efficiency through performance and scalability tests. The middleware is being implemented as a part of a project that aims to monitor the Italian petrochemical company Eni’s oil trucks shipment along Europe and USA territories.  相似文献   

7.
8.
This paper studies the problem of evaluating the relative efficiency of a set of specialized and interdependent decision-making subunits that make up a large decision-making unit (DMU). The paper develops a data envelopment analysis (DEA) approach for measuring the efficiency of decision processes which can be divided into two stages. In these processes the first stage uses its own inputs to generate outputs which a part of these outputs become the inputs to the second stage. Moreover, DMUs use shared input sources in both operation stages. This paper provides a set of additive models which measure the performance of two-stage network DEA processes with shared inputs. Numerical examples show the applicability of the approach.  相似文献   

9.
Fully automated vehicles could have a significant share of the road network traffic in the near future. Several commercial vehicles with full-range Adaptive Cruise Control (ACC) systems or semi-autonomous functionalities are already available on the market. Many research studies aim at leveraging the potential of automated driving in order to improve the fuel efficiency of vehicles. However, in the vast majority of those, fuel efficiency is isolated to the driving dynamics between a single follower-leader pair, hence overlooking the complex nature of traffic. Consequently fuel efficiency and the efficient use of the roadway capacity are framed as conflicting objectives, leading to fuel-economy control models that adopt highly conservative driving styles.This formulation of the problem could be seen as a user-optimal approach, where in spite of delivering savings for individual vehicles, there is the side-effect of the deterioration of traffic flow. An important point that is overlooked is that the inefficient use of roadway capacity gives rise to congested traffic and traffic breakdowns, which in return increases energy costs within the system. The optimisation methods used in these studies entail high computational costs and, therefore, impose a strict constraint on the scope of problem.In this study, the use of car-following models and the limitation of the search space of optimal strategies to the parameter space of these is proposed. The proposed framework enables performing much more comprehensive optimisations and conducting more extensive tests on the collective impacts of fuel-economy driving strategies. The results show that, as conjectured, a “short-sighted” user-optimal approach is unable to deliver overall fuel efficiency. Conversely, a system-optimal formulation for fuel efficient driving is presented, and it is shown that the objectives of fuel efficiency and traffic flow are in fact not only non-conflicting, but also that they could be viewed as one when the global benefits to the network are considered.  相似文献   

10.
Field-relevant reference driving cycles, equivalent to real-life operation, are a prerequisite for the consistent development and testing of vehicles, their components, and control algorithms. Furthermore they are the basis for certification and type testing. However, a static cycle can easily be detected during vehicle testing, so that optimized control parameters could be used to obtain improved emission results under test conditions. In this paper, a novel method is described and applied to generate a dynamic driving cycle that statistically matches the real-life operation of a vehicle. The analysis is performed based on an extensive field data set obtained during an automated measurement campaign of public busses for more than a full year with 27,365 h of operation and 315,583 km driven in the city of Hamburg (Germany). The data collected is statistically compared to the static reference cycles New European Driving Cycle (NEDC) and Worldwide harmonized Light Vehicles Test Procedure (WLTP). Two micro trip models with increasing complexity are described and fit to the data set. All models are quantitatively compared to the measured data set applying a Quality of Fit (QoF) indicator. Based on the highest consistency to field data, a non-deterministic driving cycle generator is developed and its output is statistically compared to the original measurement. In contrast to the existing reference cycles, the dynamic output of the non-deterministic driving cycle generator presented in this paper is statistically proven to be consistent with real-life operation of public busses in the urban environment of Hamburg.  相似文献   

11.
Real-time estimation of the traffic state in urban signalized links is valuable information for modern traffic control and management. In recent years, with the development of in-vehicle and communication technologies, connected vehicle data has been increasingly used in literature and practice. In this work, a novel data fusion approach is proposed for the high-resolution (second-by-second) estimation of queue length, vehicle accumulation, and outflow in urban signalized links. Required data includes input flow from a fixed detector at the upstream end of the link as well as location and speed of the connected vehicles. A probability-based approach is derived to compensate the error associated with low penetration rates while estimating the queue tail location, which renders the proposed methodology more robust to varying penetration rates of connected vehicles. A well-defined nonlinear function based on traffic flow theory is developed to attain the number of vehicles inside the queue based on queue tail location and average speed of connected vehicles. The overall scheme is thoroughly tested and demonstrated in a realistic microscopic simulation environment for three types of links with different penetration rates of connected vehicles. In order to test the efficiency of the proposed methodology in case that data are available at higher sampling times, the estimation procedure is also demonstrated for different time resolutions. The results demonstrate the efficiency and accuracy of the approach for high-resolution estimation, even in the presence of measurement noise.  相似文献   

12.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号