首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For over thirty years man has studied “outer space” and installed satellites which watch the surface of the Earth. The great depths of the world ocean are, however, practically unknown and there is an urgent need to put abyssal benthic laboratories into “inner space” in order to study basic phenomena of interest to marine science and climatology as well as man's impact on the oceans.In view of the numerous problems related to global change, as a first step emphasis should first be on the role of the oceans and their inherent processes, which are the focus of such international programmes as the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS). Multi-disciplinary registration of key events at selected key sites investigating the variability in time and space are of the utmost importance. The same methods and techniques must be used for the study of human impacts on the deep oceans caused by mining of metalliferous resources and by waste disposal as well as in basic studies. However, the investigation of the inner space of our planet has certain requirements. As long-term and large-scale investigations become more and more important, development of automized systems, largely independent from research vessels will be required. This will demand high capacities of energy for all technical functions as well as high storage capacities for data and samples. As a consequence the needs for two different—although overlapping—functional approaches are defined for future deep-sea deployments.(A) A system for long-term registration of the natural variability and long-term monitoring of human impacts: (B) A system for short-term observations and short-time experimentations. This report summarizes their technological demands. The envisioned interdisciplinary technology should deliver information on physical, biological and geochemical processes and their variabilities in the deep oceans. The prospected systems need to have the ability for real time video observation, data transfer and experimental manipulation, as well as sensing and sampling facilities with large storage capacities for long-term deployments.Prospective costs of the described multipurpose abyssal benthic laboratory will presumably exceed the funds for deep-sea research of a single country. A joint European effort could solve this problem and help to manifest a leading role for European marine science in international deep-sea and global change research.  相似文献   

2.
Underwater photography was used to ascertain regional, seasonal, interannual or depth dependent variations in the occurrence of phytodetritus on the Antarctic seafloor in order to explain the patchy distribution patterns of the benthos. The information was obtained from an average of 63 photographs taken at each of 76 stations in the Weddell and Lazarev Sea along a 2300 km coastline during four austral summers between 1986 and 1991. In areas where the shelf was broader than 80 km, the sediment showed a significantly higher phytodetritus cover than on the narrower shelf. This can probably be explained by the lower current velocity on the broader shelf. Significantly higher percentages of phytodetritus cover were also found on the seafloor in areas where the megabenthos cover was relatively low. These results indicate that in areas with a low current velocity, organic particles sink relatively fast onto the seafloor where they are available mainly for deposit feeders. The generally more abundant filter feeders are better adapted to a higher current velocity which transports the particles mainly horizontally over longer periods. No significant relationships were found between other physical parameters and the occurrence of phytodetritus. Therefore, the results are also discussed under the aspect of a weak pelagic–benthic coupling, effected by the long-term development of the benthic system.  相似文献   

3.
Sediment community metabolism (oxygen demand) was measured in the Northeast Water (NEW) polynya off Greenland employing two methods: in situ benthic chambers deployed with a benthic (GOMEX) lander and shipboard laboratory Batch Micro-Incubation Chambers (BMICs) utilizing ‘cores’ recovered from USNEL box cores. The mean benthic respiration rate measured with the lander was 0.057 mM O2 m−2 h−1 (n = 5); whereas the mean measured with the BMICs was 0.11 mM O2 m−2 h−1 (n = 21; p < 0.01 that the means were the same). In terms of carbon fluxes (14 and 27 mg C m−2 d−1), these respiration rates represent ca. 5–15% of the average net primary production measured in the euphotic zone in 1992. The biomass of the bacteria, meiofauna and macrofauna were measured at each location to quantify the relationship between total community respiration and total community biomass (mean 1.42 g C m−2). Average carbon residence time in the biota, calculated by dividing the biomass by the respiration, was on the order of 50–100 days, which is comparable to relatively oligotrophic continental margins at temperate latitudes.The biomass and respiration data for the aerobic heterotrophic bacteria, the infaunal invertebrates (meiofauna and macrofauna), and the epifaunal megabenthos (two species of brittle stars) are summarized in a ‘steady-state’ solution of a sediment food chain model, in terms of carbon. This carbon budget illustrates the relative importance of the sediment-dwelling invertebrates in the benthic subsystem, compared to the bacteria and the epibenthos, during the summer open-water period in mud-lined troughs at depths of about 300 m. The input needed to drive heterotrophic respiratory processes was within the range of the input of organic matter recorded in moored, time-sequencing sediment traps.A time-dependent numerical simulation of the model was run to investigate the potential responses of the three size groups of benthos to abrupt seasonal pulses of particulate organic matter. The model suggests that there is a time lag in the increase in bottom community biomass and respiration following the POC pulse, and provides hypothetical estimates for the potential carbon storage in the summer (open water), followed by catabolic losses during each ensuing winter (ice covered).This sequence of storage and respiration may contribute to the process of seasonal CO2 ‘rectification’ (sensu Yager et al., 1995) in some Arctic ecosystems.  相似文献   

4.
Bacterial abundance and production were measured monthly for one year along cross-shore transects in 3 sub-Antarctic fjords of the Kerguelen Archipelago (seven stations each). Mean values of the 3 most coastal (inside) and most offshore (outside) stations were used to describe the relationship between temperature, phytoplankton biomass, bacterial abundance and bacterial production over a one year annual cycle. The entire sampling protocol was repeated twice during each cruise: once at noon and once at midnight. Over the whole sampling period, the temperature ranged from 2.1 to 7.4 °C, while chlorophyll a concentrations varied by a factor of 10, and bacterial abundance and production varied by factors of 12 and 30, respectively. Within one day, all of these parameters sometimes varied by a factor of 4 between noon and midnight. A clear seasonality was observed for all of the parameters. However, while variations of phytoplankton and bacterial production paralleled those of temperature, bacterial abundance was low in midsummer and maximum in autumn. While no general pattern could be observed from the total data set, spatial gradients could interfere strongly with temporal changes.  相似文献   

5.
The structure and dynamics of the benthic invertebrate megafauna of the Southeastern Brazilian shelf were studied over a 2-year period. Two regions presenting different oceanographic conditions, Ubatuba-SP and Cabo Frio-RJ were compared in terms of biomass, density of organisms and species richness. Two to three 30-min tows were undertaken at each of the stations, located at 40 and 100 m isobath, in a normal transect offshore of both regions. Faunal distributional patterns correlated with water mass dynamics, depth and sediment parameters. In the Cabo Frio region, subjected to a Ekman-driven seasonal coastal upwelling, the impact of the South Atlantic Central Water (SACW) on the inner shelf leads to a change in the benthic communities, with a high dominance of top carnivores such as the crab Portunus spinicarpus and the sea-star Astropecten brasiliensis, which accounted for the larger part of the total biomass. Distinct species associations were found in each of the two regions and the total biomass at Cabo Frio inner shelf was almost twice that of Ubatuba during the 2002 summer, when a marked upwelling was verified. The relationship between megabenthic biomass and input of organic matter to the sea floor during upwelling events is discussed.  相似文献   

6.
We compared an idealised mathematical model of the lower part of the pelagic food web to experimental data from a mesocosm experiment in which the supplies of mineral nutrients (nitrogen and phosphorous), bioavailable dissolved organic carbon (BDOC, as glucose), and silicate were manipulated. The central hypothesis of the experiment was that bacterial consumption of BDOC depends on whether the growth rate of heterotrophic bacteria is limited by organic-C or by mineral nutrients. In previous work, this hypothesis was examined qualitatively using a conceptual food web model. Here we explore the extent to which a “simplest possible” mathematical version of this conceptual model can reproduce the observed dynamics. The model combines algal–bacterial competition for mineral nutrients (phosphorous) and accounts for alternative limitation of bacterial and diatom growth rates by organic carbon and by silicate, respectively. Due to a slower succession in the diatom–copepod, compared to the flagellate–ciliate link, silicate availability increases the magnitude and extends the duration of phytoplankton blooms induced by mineral nutrient addition. As a result, Si interferes negatively with bacterial consumption of BDOC consumption by increasing and prolonging algal–bacterial competition for mineral nutrients. In order to reproduce the difference in primary production between Si and non-Si amended treatments, we had to assume a carbon overflow mechanism in diatom C-fixation. This model satisfactorily reproduced central features observed in the mesocosm experiment, including the dynamics of glucose consumption, algal, bacterial, and mesozooplankton biomass. While the parameter set chosen allows the model to reproduce the pattern seen in bacterial production, we were not able to find a single set of parameters that simultaneously reproduces both the level and the pattern observed for bacterial production. Profound changes in bacterial morphology and stoichiometry were reported in glucose-amended mesocosms. Our “simplest possible” model with one bacterial population with fixed stoichiometry cannot reproduce this, and we suggest that a more elaborate representation of the bacterial community is required for more accurate reproduction of bacterial production.  相似文献   

7.
The objectives of the present study were to describe the species composition, diversity and distribution of the zoobenthic assemblages, to estimate the abundance and biomass of the dominant species, and to identify the main environmental factors determining the distribution patterns of the invertebrates from a freshwater to an estuarine zone in a temperate estuary of South America. The Río de la Plata estuary is a microtidal system characterized by a high concentration of suspended solids. Fifty-three taxa of meso- and macro-invertebrates were identified in the samples collected during November and December 2001. Molluscs, annelids, crustaceans and nematodes were found at 90% of the sampling sites. Molluscs comprised up to about 90% of the total zoobenthos biomass: the remaining percentage corresponded mainly to annelids and less to nematodes and crustaceans. An ecocline along the salinity gradient could be observed for the benthic assemblages from the freshwater to the estuarine zone in Rio de la Plata. A Canonical Correspondence Analysis shows that results from sampling sites in the outer zone were strongly related to salinity, depth and pH and less to oxygen and percentage of clay. The results from stations in the inner zone, and part of the middle zone, were mainly related to the occurrence of sand and contents of NH4+–N, NO3–N, and PO43−–P.  相似文献   

8.
Changes in sediment quality, with special reference to benthic habitat conditions resulting from macroalgae overgrowth, were studied in the Venice Lagoon, Italy. Data were collected biweekly in spring and summer from 1993 to 1998 and from 2001 to 2002, as part of the macroalgae growth control strategies managed by the Venice Water Authority-Consorzio Venezia Nuova. Benthic habitat conditions were studied by means of Sediment Profile Imaging, which allowed the collection of several variables: aRPD (apparent redox potential discontinuity), prism penetration depth, presence of anoxia on the surface of the sediment, presence of reduced gas bubbles, stage of benthic colonization. All these variables led to the calculation of an environmental index (Organism–Sediment Index, OSI), which was then related to physical variables and macroalgae abundance. Until 1996, the overall benthic habitat of the Venice Lagoon showed almost stressed conditions; from 1997, the seaweed biomass rapidly declined and the OSI increased significantly. The OSI seemed to be affected by seaweed biomass, sediment compactness and water depth. Macroalgae biomass greater than 4.5 kg/m2 led to the complete disappearance of stage III of benthic colonization; values as low as 0.70 kg m2 already had a severe impact on recolonization. SPI attributes indicated the main mechanisms that could have contributed to the benthic quality: seaweed proliferation is often followed by rapid decay of macroalgae biomass, especially when present in large amounts. The decrease in seaweed biomass often results in oxygen depletion in the water column and thus in the sediment, preventing complete benthic colonization. This research confirms the importance of in situ rapid reconnaissance surveys to assess the impact of eutrophication on the benthic habitat.  相似文献   

9.
The North Bay of Biscay continental shelf is a major French demersal fishery, but little was known on the trophic food web of its benthic communities. In order to determine the benthic trophic web, the objectives of this study are to describe the macro- and megafaunal benthic community structure (species richness, abundance and biomass) and to establish the trophic pathways (food sources and trophic levels) by applying carbon and nitrogen stable isotopic analysis to the main benthic and demersal species (invertebrates and fish). Two distinct benthic communities have been identified: a muddy sand community within the central part of the bay, and an outer Bay of Biscay Ditrupa sand community of higher species richness, abundance and biomass than the muddy sand community. Deposit-feeders, suspension feeders and predators, distributed in three main trophic levels, dominate both communities. Large differences in stable carbon ratio values within the primary consumers provide evidence of two different food sources: i) a pelagic food source made up of recent sedimenting particulate organic matter on which zooplankton and suprabenthos feed and ii) a benthic detrital food source supplying deposit feeders and partly benthic suspension feeders. Differences in isotopic signatures were also observed within the upper trophic levels that allowed estimation of the contribution of each food source component to the diet of the upper consumers. Finally, the use of stable isotopic composition together with the species' feeding strategy allow identification of the main differences between the trophic functioning of the two benthic communities and highlight the importance of the role of detrital pathways in the carbon cycling within the continental shelf benthic trophic web.  相似文献   

10.
Biogenic silica cycle in surface sediments of the Greenland Sea   总被引:2,自引:0,他引:2  
In contrast to several investigations of biogenic silica (BSi) content and recycling in surface sediments of the Southern Ocean, little is known about the benthic cycle of BSi in high northern latitudes. Therefore, we investigated the silicic acid concentration of pore water and BSi content of surface sediments from the Greenland Sea. Low BSi contents of less than 2% were observed. High-resolution (2–5 mm) BSi profiles and comparisons to trap studies suggest that only relatively dissolution-resistant siliceous components reach the seafloor. Pore water investigations reveal BSi fluxes of more than 300 mmol m−2 a−1 only for a few sites on the shelf. A statistically significant relationship between water depth and BSi rain rate reaching the seafloor was not observed. Sampling along a transect perpendicular to the marginal ice zone (MIZ) revealed no enhanced rain rate of BSi reaching the seafloor in the vicinity of the ice edge. Although the MIZ of the Greenland Sea is characterized by the enhanced export of biogenic particles from surface waters, this feature is not reflected in the benthic cycle of biogenic silica. The lack of such a relationship, which is in contrast to observations of shelf and continental margin sediments in the southern South Atlantic, is probably caused by the enhanced dissolution of BSi in the water column and highly dynamic ice conditions in the Greenland Sea.  相似文献   

11.
Microphytobenthos biomass has been measured at several coastal sites on the SE of the main island of the Kerguelen Archipelago (Indian Ocean), during several austral summers (1985–1992), using a conventional fluorometric method. Heterogeneity tests, conducted on two different intertidal sites (Port-Aux-Français, PAF; and Port-Raymond, PRA), showed low standard deviations, whereas the mean concentrations were highly different. Pigment concentrations showed a high variability related to the characteristics of the sediments: from low biomass in coarse intertidal sand, submitted to intense scouring (0.32±0.31 μg Chl a g−1 dw, 0.29±0.14 μg Phaeo g−1 dw) to high biomass in intertidal muddy sand in sheltered areas, particularly along estuaries (54 μg Chl a, 15 μg Phaeo g−1 dw at Korrigan). The subtidal muddy sediments under a Macrocystis pyrifera (Linné) and Durvillaea antarctica (Chamisso in Choris) belt exhibited high concentrations in phaeopigment (Phaeo) (up to 136±83 μg g−1 dw; PRA), while the concentration of chlorophyll a (Chl a) was relatively low. The dense macroalgal canopy supports an important epiphytic diatom biomass (mainly the genera Cocconeis Ehrenberg and Grammatophora Ehrenberg), which is sedimenting after degradation and is in part responsible of the high levels of Phaeo in all sediments. Macroalgal debris were observed, but diatom frustules were dominant in most surficial subtidal sediments. A circatidal mud, in the Morbihan Bay, made of a sponge spicule mat (50 m deep; 4.96 μg Chl a g−1 dw), showed a very low Chl a/Phaeo ratio (0.1), while it reached up to 6 in intertidal sand. Surprisingly, a penguin rookery beach, at the east side of Courbet Peninsula, was characterized by a very low biomass (0.07±0.04 μg Chl a g−1 dw), while it was nutrient enriched, particularly with nitrates.In comparison with the data at the similar latitude, but in temperate regions from the Northern Hemisphere, the microphytobenthos biomass, recorded at Kerguelen's Land, exhibited relatively high pigment concentrations, particularly the Phaeo, and supported a dense and diversified subtidal macrofauna composed of polychaetes (particularly Thelepus extensus Hutchings and Glasby), sea urchins, mytillids and gammarids. The exuberant macroalgal canopy, coastal indentations and low tidal amplitude must be in part responsible of these large benthic primary and secondary biomasses.  相似文献   

12.
The evolution of dissolved organic matter (DOM) in a non-axenic batch culture of the marine diatom Thalassiosira tumida was studied by hydrophobic fractionation during a three month experiment. DOM was fractionated with XAD-2 resin into hydrophobic (acid and neutral, “humic”) and hydrophilic fractions. The combined amino acid contents of unfractionated filtered seawater, XAD-fractions and particulate material were determined during the growth, stationary and degradation phases of the culture, and variations related to changes in dissolved organic nitrogen (DON) in XAD-fractions, dissolved inorganic nitrogen, algal and bacterial biomass. XAD-fractionation enabled the discrimination of simultaneously ocurring release and uptake of organic nitrogenous compounds: During the diatom growth there was a net increase of tolal DON concentrations, which was mostly accounted for by the hydrophilic fraction. A concurrent heterotrophic uptake of combined amino acids and other non-amino acid organic nitrogen was discernible by the decrease of their concentrations in the hydrophobic fractions. In the stationary phase, during the prevailing net consumption of total DON, the production of algal exudates could be detected in the hydrophobic fractions, while uptake mainly involved non-amino acid organic nitrogen from the hydrophilic fraction. During the degradation phase, after two months part of the particulate amino acid pool was transformed into hydrophilic DON, which in contrast to the stationary phase, was not adequate for supporting sustained bacterial growth. This suggests that the generation of recalcitrant substances may begin in the hydrophilic fraction of DOM. A slight increase of the hydrophobic acid fraction was indicative of the incipient formation of humic substances. XAD-2 was able to adsorb substances from fast changing DOM pools and thus should be a useful tool in studies concerned with phytoplankton and bacterial dynamics.  相似文献   

13.
A pseudo-two-dimensional numerical model of estuarine phytoplankton growth and consumption, vertical turbulent mixing, and idealized cross-estuary transport was developed and applied to South San Francisco Bay. This estuary has two bathymetrically distinct habitat types (deep channel, shallow shoal) and associated differences in local net rates of phytoplankton growth and consumption, as well as differences in the water column's tendency to stratify. Because many physical and biological time scales relevant to algal population dynamics decrease with decreasing depth, process rates can be especially fast in the shallow water. We used the model to explore the potential significance of hydrodynamic connectivity between a channel and shoal and whether lateral transport can allow physical or biological processes (e.g. stratification, benthic grazing, light attenuation) in one sub-region to control phytoplankton biomass and bloom development in the adjacent sub-region. Model results for South San Francisco Bay suggest that lateral transport from a productive shoal can result in phytoplankton biomass accumulation in an adjacent deep, unproductive channel. The model further suggests that turbidity and benthic grazing in the shoal can control the occurrence of a bloom system-wide; whereas, turbidity, benthic grazing, and vertical density stratification in the channel are likely to only control local bloom occurrence or modify system-wide bloom magnitude. Measurements from a related field program are generally consistent with model-derived conclusions.  相似文献   

14.
陈定  王野  苏召斌 《水运工程》2020,(S1):95-99
泥浆浓度是绞吸挖泥船施工产量的关键参数,传统的测量技术因使用放射源而产生核辐射风险和环境污染问题。采用电学层析技术中的电阻层析成像(ERT)技术进行泥浆管道的浓度分布成像,利用电导率测算泥浆浓度,研制了一套泥浆浓度的新型无放射源测量装置,并进行了绞吸挖泥船实船应用试验。结果表明:该新型泥浆浓度测量装置与取样结果误差在3%以内;相对于传统放射源测量装置可靠性提高,环保性能更加突出。  相似文献   

15.
Strategies to predict, and thus limit, potentially detrimental environmental impacts of abyssal disposal of wastes are severely limited by our lack of knowledge of deep-sea processes and lack of opportunity to directly study waste disposal in abyssal environments. Probable successional sequences following burial of benthic faunas by sewage sludge and dredged material on the abyssal seafloor are drawn by analogy with well-known processes in shallow-marine water. Scales of change and recovery of abyssal benthic faunas from episodic deposition of waste material are examined by extrapolation from what is currently known about turbidite sedimentary provinces, in particular, the Venezuela Abyssal Plain and the Great Meteor East area of the Madeira Abyssal Plain. Results suggest that initial benthic faunal recolonization would take place within years following episodic depositions of waste on the abyssal seafloor. Anoxic conditions or chemical inhibitory effects may delay initial benthic recolonization for hundreds of years. Establishment of equilibrium benthic faunal assemblages probably takes hundreds to potentially thousands of years. Potentially detrimental effects dictate that the surface areas of individual waste deposits should be minimized and the deposits should be isolated by capping with nontoxic materials or chemical barriers.  相似文献   

16.
钛合金是深海工程装备的重要材料,在深海环境下会产生不同程度的蠕变变形。该文针对双态组织和网篮组织TC4 ELI钛合金材料,在宏观和微观两个方面开展钛合金蠕变试验研究。开展多组应力水平下的钛合金压缩蠕变试验,绘制蠕变曲线,对传统的Norton方程进行修正,基于最小二乘法拟合饱和蠕变临界应力值和蠕变应力指数,给出初始蠕变阶段和稳态阶段的蠕变本构关系。同时,基于OM(光学显微镜)、XRD(X射线衍射)、TEM(透射电镜)和SEM(扫描电镜)观察,给出TC4 ELI钛合金材料的压缩蠕变微观机理。  相似文献   

17.
18.
A model, constructed using STELLA™, was used to simulate changes in standing stocks and flows of organic matter resulting from sediment resuspension in shallow coastal environments. Previous studies suggested that resuspension may determine the sites and rates of organic matter mineralization in shallow environments (Hopkinson, 1985, 1987). Those studies predicted that resuspended organic material could exert an enhanced demand on dissolved oxygen. Our model results support this hypothesis. Total system metabolism receives increasing contributions from the water column as settling rate decreases. Water column respiration also increases relative to benthic respiration as the frequency and intensity of resuspension events increases. This is driven by higher specific degradation rates in the water column than in the benthic environment. Furthermore, overall respiration (benthic + pelagic) increases in response to resuspension.  相似文献   

19.
In marine coastal areas many planktonic species produce resting stages (cysts) that sink to the bottom. Integrated sampling from both the water column (to collect active stages), and sediments (to collect cysts), could be useful to achieve more complete information about plankton composition.In the framework of the “INTERREG II Albania-Italy Project” an oceanographic survey was carried out aboard the r/v “Italica” from 20 to 31 October 2000. The survey interested the northern Albanian coast (Gulf of Drin) and the northern Apulian coast (Gulf of Manfredonia) on the opposite sides of the South Adriatic Sea. The plankton was collected from 14 stations. A total of 188 categories were recognized in plankton samples. Among those categories, 130 species were recognized (87 of phytoplankton, 43 of microzooplankton), and only 53 (40.8%) resulted common to both the Adriatic sides. A total of 69 cyst morphotypes were recognized in sediment samples; 38 of them were classified at the level of species. A statistical analysis of the micro-zooplankton species abundance showed a segregation of the two areas better than that obtained with the phytoplankton. Cyst distribution in the sediments showed a good gulf-segregation too. In addition, they allowed us to find complementary information, particularly for dinoflagellates. The most abundant species in the water column were not equally dominant as resting stages in the sediments. Sediment sampling allowed further information about the composition of the plankton communities, and suggested us to search for a new method to enhance the yield of less abundant cysts.  相似文献   

20.
The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely variable, and their characterization requires an extensive sampling program to provide data over meaningful scales of time and space. In contrast, benthic faunal communities integrate the impacts of low DO over time, and can be rapidly assessed using benthic imaging. The goal of this study was to quantify the relationships between near-bottom dissolved oxygen and measures derived from benthic imaging with a sediment profile camera. We monitored three stations in Narragansett Bay (Rhode Island, USA) for DO and other water quality parameters 15–20 cm above the sediment surface on 15-minute intervals between July and November 2002, and regularly sampled these stations with a sediment profile camera throughout this time period. These soft-sediment stations encompassed several DO environments. We tested for relationships between near-bottom DO and several camera measures, including Nilsson and Rosenberg's Benthic Habitat Quality (BHQ) index, the apparent Redox Potential Discontinuity (aRPD) depth, and various faunal features that can be identified in sediment profile images. Camera measures were examined against a variety of methods of characterizing DO (including mean DO, and the percent of time under various DO thresholds), over a span of time scales from 1 day to 49 days. The best relationship (highest r2) between near-bottom DO and BHQ was found when DO was evaluated as the percent of time under a hypoxic threshold of 2.6 mg l− 1 over a 28-day time scale (by examining DO records over the 28 days preceding each camera deployment). We found that, over several benthic settings, the BHQ index was successful at identifying environments that had experienced relatively high or low DO over the preceding four weeks. Our sediment profile data showed more variability with DO in the intermediate values of BHQ. We conclude that sediment profile camera measures correlate to DO in areas where low DO is the primary stressor, integrate DO over ecologically relevant time scales, and enable sampling over spatial scales that are meaningful for mapping by virtue of rapid deployment and analysis. We submit that sediment profile camera imagery is a useful assessment and mapping tool for environmental managers interested in benthic condition and in first-order quantitative estimates of near-bottom DO regimes in areas where low DO is the primary benthic stressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号