首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
建立了基于空气悬架的1/2车辆加速/制动系统模型,通过轴距预瞄在后轮处提前预测路面不平度;设计了基于轴距预瞄控制算法的加速/制动最优控制器;进行了白噪声仿真分析。仿真结果表明:与被动空气悬架加速/制动系统相比,基于轴距预瞄控制的主动空气悬架加速/制动系统能有效降低车辆振动。与最优控制空气悬架加速/制动系统相比,质心加速度和后轮对应处的车身加速度、悬架动行程、轮胎动载均有显著减小,较好的改善了车辆在加速/制动时的平顺性和操纵稳定性。  相似文献   

2.
为了研究轴距预瞄控制技术对半主动悬架系统性能的影响, 构建了基于轴距预瞄的1/2车辆半主动悬架综合模型, 结合神经网络和PID控制理论, 提出了单神经元自适应PID控制算法, 设计了轴距预瞄半主动悬架单神经元PID控制系统, 进行了仿真计算。为研究单神经元自适应PID控制策略的有效性及其控制系统的可靠性, 同时进行了基于轴距预瞄的实车道路试验。研究结果表明: 与被动悬架系统相比, 在车速为50km.h-1时, 车身质心垂直加速度的峰值和标准差分别减少了20.91%和19.11%;车速为60km.h-1时, 分别减少了24.42%和26.85%, 并且俯仰角加速度也有一定程度降低, 较好改善了车辆的行驶平顺性。  相似文献   

3.
基于AMESim软件建立1/4空气悬架系统模型,利用Matlab软件设计空气悬架系统控制器,使用Matlab和AMESim对空气悬架系统进行联合仿真。白噪声路面信号输入下的联合仿真结果分析表明,安装主动空气悬架系统车辆的最大振动加速度与振动加速度均方根、平均车身高度、动载荷均比安装被动空气悬架系统的车辆小,该仿真结果符合有关主动空气悬架系统的一般研究结论,该控制方法可以有效提高车辆的平顺性。  相似文献   

4.
为提高汽车空气悬架的行驶平顺性,针对空气弹簧的非线性特性,建立空气弹簧关于气囊压力、有效面积、垂向变形等因素有关的弹力模型.利用所建立的空气弹簧弹力模型建立单轮1/4车辆动力学模型.以车身加速度最小为控制目标,设计并建立非线性空气悬架的联合型模糊PID控制器.运用MATLAB/Simulink仿真软件,以气囊压力变化所产生的力作为控制输出量,进行计算机动态仿真.仿真结果表明:与被动空气悬架相比,针对非线性空气悬架所设计的联合型模糊PID控制器对车辆平顺性与道路友好性有显著的改善.  相似文献   

5.
为提高车辆在不平路面上的行驶平顺性,减小车身所受扭转载荷,提出了一种四角互联空气悬架系统.基于工程热力学和车辆动力学理论,构建了带四角互联空气悬架的整车动力学模型.通过搭建试验台架,验证了所建模型的准确性,并在Matlab/Simulink中进行了仿真分析.研究结果表明:当车辆以20 km/h的速度行驶在对扭路面时,与传统空气悬架相比,四角互联空气悬架可使车身加速度、侧倾角和车轮动载荷分别改善22.5%,24.2%和16.3%, 并消除27.8%的车身扭转载荷,但悬架动行程增大20.6%;连接管路内径在0~10 mm范围增大,互联效果越显著,当车速在10~60 km/h范围时,四角互联空气悬架能有效提升车辆隔振性能,且车速在40 km/h以下消扭效果更加明显.   相似文献   

6.
为了降低车速变化对车辆操纵稳定性的影响, 建立了考虑车速变化的动态车辆转向运动模型, 分析了描述模型的微分方程组所有系数都是随车速变化而时变的特性, 通过变参数动态仿真, 定量研究了车速变化对车辆操纵稳定性的影响。研究结果表明: 减速时正的纵向车辆惯性力使后轴负荷向前轴转移, 导致前轴侧偏刚度变大, 后轴侧偏刚度变小, 进而使车辆的横摆角速度增益增大, 即车辆操纵稳定性变差; 初始车速越高, 减速度越大, 车辆横摆角速度增益增大越快; 加速时负的纵向车辆惯性力使前轴负荷向后轴转移, 导致前轴侧偏刚度变小, 后轴侧偏刚度变大, 进而使车辆的横摆角速度增益减小。可见, 减小车辆减速度、降低车身质心高度及增大轴距是弱化减速导致车辆操纵稳定性急剧变差的有效方法。  相似文献   

7.
黄海 《城市公共交通》2011,(7):40-41,43
传统汽车悬架是以钢板弹簧、螺旋弹簧或扭杆弹簧等作为弹性元件,它的刚度变化小,只能满足一定道路条件下和特定车速时汽车行驶的平顺性要求.空气悬架系统的特征是以空气为介质、采用充气橡胶气囊作为弹性元件,悬架的刚度随机可调,充分保证了汽车在不同载荷质量、不同行驶条件下良好的平顺性和稳定性.  相似文献   

8.
汽车半主动悬架的模糊控制   总被引:1,自引:0,他引:1  
以两自由度汽车1/4模型作为研究基础,采用模糊数-模糊控制(FFC)策略设计了半主动悬架控制系统,并用MATLAB软件进行了性能仿真.在输入一定激励信号的情况下,把模糊控制半主动悬架与被动悬架及PID控制半主动悬架的工作情况进行了比较.仿真结果表明,模糊控制技术(FCT)能更好地实现控制效果,显著地减小车辆振动,提高车辆行驶的平顺性.  相似文献   

9.
建立了包含扭转梁式悬架系统的整车8自由度平顺性模型和车辆瞬态侧倾模型,运用MATLAB/Simu-link仿真分析了扭转梁式悬架系统对平顺性和车辆瞬态侧倾的影响,并进行平顺性随机输入行驶试验和稳态回转试验验证。研究表明:在积分白噪声仿真路面,扭转梁式悬架系统对垂向和纵向振动几乎没有影响,但对侧倾振动动态性能具有重要影响,如固有频率、峰值时间、最大超调量等;揭示了扭转梁式悬架的扭转刚度、纵臂长度与车身侧倾角、车身侧倾固有频率、瞬态侧倾特性等之间的关系,为平顺性和操稳性协同优化设计奠定了基础。  相似文献   

10.
为进一步改善横向互联空气悬架车辆的行驶平顺性和操纵稳定性, 基于多智能体理论和合作博弈Shapley值原理构建多智能体减振器控制系统; 多智能体减振器控制系统由信息发布智能体、平顺性智能体、操稳性智能体和博弈协调智能体组成, 其中信息发布智能体从环境中获取车辆状态信息, 根据下层智能体的信息需求传递信息, 平顺性智能体接收悬架动行程及其变化率信息, 根据平顺性控制要求, 输出自身的阻尼系数意图, 操稳性智能体接收当前互联状态信息触发对应的推理模块, 根据车身侧倾角信息求解需求的阻尼系数, 其中推理模块是通过对遗传算法优化出的阻尼系数进行模糊神经网络自学习形成的, 博弈协调智能体接收平顺性智能体与操稳性智能体的阻尼意图, 根据自身的合作博弈规则, 对阻尼意图进行修正, 输出全局最优阻尼系数; 在不同互联状态、不同激励条件下进行空气悬架静、动态特性试验研究, 并将试验结果与仿真结果进行对比, 验证仿真模型的准确性; 在混合工况下, 利用整车仿真模型验证多智能体减振器控制系统的可行性和有效性。研究结果表明: 和传统减振器阻尼控制系统相比, 多智能体减振器控制系统能有效地使簧载质量加速度均方根值降低14.95%, 悬架动行程均方根值降低10.64%, 车身侧倾角均方根值降低12.33%。提出的多智能体减振器控制系统改善了车辆行驶平顺性和乘坐舒适性, 并且能够抑制车身的侧倾, 提高整车的操纵稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号