首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
SUMMARY

This review of the state of the art emphasizes recent results that have been obtained in extending conventionalanalysis techniques to the treatment of “Highway Trains”, that is, to heavy trucks that have multiple articulation points and employ suspensions with multiple axles. Equations of motion applicable to the equilibrium turning performances of articulated vehicles are examined with respect to using analysis techniques involving steering gains, understeer gradients, effective wheel-bases, handling diagrams, and critical speeds. These examinations provide the basis for in sights into simplified approaches for understanding the steady turning mechanics of articulated, multi-axle vehicles riding on pneumatic tires.  相似文献   

2.
SUMMARY

The rollover immunity levels of articulated tank vehicles with partial loads are investigated. A static roll plane model of the articulated vehicle employing partially filled cylindrical tank is developed. The vertical and lateral translation of the liquid cargo due to vehicle roll angle and lateral acceleration, encountered during steady turning, are evaluated. The roll moments arising from vertical and lateral translation of the liquid cargo are determined and incorporated in the roll plane model of the vehicle. The adverse influence of the unique interactions of the liquid within the tank vehicle, on the rollover limit of the articulated vehicle is demonstrated. The influence of compartmenting of the tank on the steady turning roll response of the vehicle is analyzed, and an optimal order of unloading the compartmented tank is discussed.  相似文献   

3.
SUMMARY

This paper presents a review of the available literature describing the methods of modelling the vibrational response of articulated vehicles to the road inputs at the tire contact points. It states and discusses the mathematical techniques that have been put forward for obtaining road input characteristics, for modelling the vehicles in a range of degrees of freedom, and for performing the analysis necessary to obtain the vibrational response. Finally the indices that have been proposed for ride comfort and ride safety are given and the manner in which various researchers relate these to the vibrational characteristics of the vehicles is described.  相似文献   

4.
The rollover immunity levels of articulated tank vehicles with partial loads are investigated. A static roll plane model of the articulated vehicle employing partially filled cylindrical tank is developed. The vertical and lateral translation of the liquid cargo due to vehicle roll angle and lateral acceleration, encountered during steady turning, are evaluated. The roll moments arising from vertical and lateral translation of the liquid cargo are determined and incorporated in the roll plane model of the vehicle. The adverse influence of the unique interactions of the liquid within the tank vehicle, on the rollover limit of the articulated vehicle is demonstrated. The influence of compartmenting of the tank on the steady turning roll response of the vehicle is analyzed, and an optimal order of unloading the compartmented tank is discussed.  相似文献   

5.
This paper presents a review of the available literature describing the methods of modelling the vibrational response of articulated vehicles to the road inputs at the tire contact points. It states and discusses the mathematical techniques that have been put forward for obtaining road input characteristics, for modelling the vehicles in a range of degrees of freedom, and for performing the analysis necessary to obtain the vibrational response. Finally the indices that have been proposed for ride comfort and ride safety are given and the manner in which various researchers relate these to the vibrational characteristics of the vehicles is described.  相似文献   

6.
Many methods we have been developed to control the rear wheels of a vehicle, but most of them are designed for automobiles with four wheels. The AWS (all wheel steering) control method for articulated vehicles is currently applied only to Phileas vehicles developed by APTS, but the control algorithm for this system has yet to be reported. In the present paper, a new algorithm is proposed after the AWS ECU (electronic control unit) of the Phileas vehicle was tested and analyzed in order to understand the existing steering algorithm. The new algorithm considers the vehicle geometry, stability of handling, and safety, and can be easily applied to multi-axle vehicles. In order to verify the AWS algorithm, the trajectory and steering angles of each algorithm were compared using the commercial software ADAMS. Turning radius, swing-out, and swept path width were also investigated to determine the turning performance of the proposed algorithm.  相似文献   

7.
This paper presents the application of a nominal control design algorithm for rollover prevention of heavy articulated vehicles with active anti-roll-bar control. This proposed methodology is based on an extension of linear quadratic regulator control for ‘state derivative-induced (control coupled) output regulation’ problems. For heavy articulated vehicles with multiple axles, a performance index with multiple rollover indices is proposed. The proposed methodology allows us to compare the usefulness of various control configurations (i.e. actuators at different axles of the vehicle) based on the interaction of this control configuration with vehicle dynamics. Application of this methodology to a specific heavy articulated vehicle with a tractor semi-trailer shows that a single active anti-roll-bar system at the trailer unit gives better performance than multiple-axle actuators at tractor and trailer together with the single lane change manoeuvre as the external disturbance. Thus, the proposed methodology of this paper not only highlights the importance of the interactions between control and vehicle dynamics in rollover prevention problems but, in fact, proposes a novel technique to exploit the benefits of these interactions judiciously.  相似文献   

8.
This review of the dynamics of heavy road-vehicle systems emphasizes directional performance. The review presents information on the following topics: why are articulated vehicles used; units, hitches, and combination vehicles; multiple axle suspensions and steering systems; important performance issues; models and simulation tools; and controlling directional performance. The concluding section summarizes the material presented and provides ideas regarding the application of vehicle system dynamics concepts in developing controllers for road trains.  相似文献   

9.
This paper proposes a non-linear dynamics model for articulated vehicles. This model is able to capture common low-speed behaviours of any articulated vehicles off-highway, such as operating for a corner or roundabout on a cambered or slippery surface. It can be used to assess the low-speed manoeuvrability of articulated vehicles under such manoeuvres and conditions. The vehicle model was validated by comparing its path tracking performance to that of the field tests.  相似文献   

10.
This paper describes an investigation into active roll control of articulated vehicles. The objective is to minimise lateral load transfer using anti-roll bars incorporating low bandwidth hydraulic actuators. Results from handling tests performed on an articulated vehicle are used to validate a nonlinear yaw/roll model of the vehicle. The methodology used to design lateral acceleration controllers for vehicles equipped with active anti-roll bars is developed using a simplified linear articulated vehicle model. The hardware limitations and power consumption requirements of the active elements are studied. The controller is then implemented in the validated articulated vehicle model to evaluate the performance of an articulated lorry with active anti-roll bars. The simulation results demonstrate the possibility of a significant improvement in transient roll performance of the vehicle, using a relatively low power system (10 kW), with low bandwidth actuators (5 Hz).  相似文献   

11.
SUMMARY

This paper presents the results of a comparative study of the predictions, made using computer simulation models of different levels of complexity, of the directional responses of commercial articulated vehicles in steady-state and lane-change maneuvers. The differences in the predictions obtained using various models are examined and are compared with available experimental data. The objective of this study is to compare the capabilities and limitations of various simulation models for predicting the directional behavior of articulated vehicles.  相似文献   

12.
Results from a previously reported experimental study on heavy articulated vehicles show that the choice of tractor unit strongly affects the dynamic tyre forces generated by the trailer axles, but the choice of trailer unit does not strongly affect the tyre forces generated by the tractor axles. These results have implications for assessing the road-friendliness of tractor and trailer units. The objectives of the work described in this paper are to understand the dynamic interaction between the tractor and trailer unit, and to identify the conditions for which strong interaction exists. A mathematical model with two degrees of freedom is used to simulate the pitch-plane dynamics of an articulated vehicle. Three idealized vehicles are investigated and three conditions for strong dynamic interaction are identified. It is thought that these conditions are likely to exist in a large proportion of heavy trucks.  相似文献   

13.
研究了一种四轮转向与铰接车架组合的主副车模式运梁车的结构形式,并对该形式运梁车的转向工况进行分析,得出了具有最小转弯半径的工况及确定方法和最小转弯半径的计算公式.结果表明:最小转弯半径工况的方法能够更好地确定最小转弯半径,可为具有同类结构的运梁车最小转弯半径的计算提供理论依据.  相似文献   

14.
SUMMARY

In choosing the steering system parameters the tendency is towards the minimization of kinematic errors that appear during turning. For that developed procedures exist that take into account also the influence of kinematic of the suspension system on kinematic parameters of vehicle turning. Besides that, maintenance tests have shown, that increased deflections of the suspension system lead to increased wear of tires of steered wheels. In this paper, a method is developed for minimization of steered wheel shimmy and its wear also during the straight-line drive of heavy vehicles. The procedure can also be used in the phase of designing the heavy vehicles.  相似文献   

15.
This paper presents the results of a comparative study of the predictions, made using computer simulation models of different levels of complexity, of the directional responses of commercial articulated vehicles in steady-state and lane-change maneuvers. The differences in the predictions obtained using various models are examined and are compared with available experimental data. The objective of this study is to compare the capabilities and limitations of various simulation models for predicting the directional behavior of articulated vehicles.  相似文献   

16.
发动机后置铰接式客车   总被引:1,自引:1,他引:0  
简要探讨发动机后置铰接式客车在行驶和转弯时的受力情况;简单介绍发动机后置铰接式客车所用的推式铰接装置的功能。  相似文献   

17.
A Rollover Index combined with the grey system theory, called a Grey Rollover Index (GRI), is proposed to assess the rollover threat for articulated vehicles with a tractor–semitrailer combination. This index can predict future trends of vehicle dynamics based on current vehicle motion; thus, it is suitable for vehicle-rollover detection. Two difficulties are encountered when applying the GRI for rollover detection. The first difficulty is effectively predicting the rollover threat of the vehicles, and the second difficulty is achieving a definite definition of the real rollover timing of a vehicle. The following methods are used to resolve these problems. First, a nonlinear mathematical model is constructed to accurately describe the vehicle dynamics of articulated vehicles. This model is combined with the GRI to predict rollover propensity. Finally, TruckSim? software is used to determine the real rollover timing and facilitate the accurate supply of information to the rollover detection system through the GRI. This index is used to verify the simulation based on the common manoeuvres that cause rollover accidents to reduce the occurrence of false signals and effectively increase the efficiency of the rollover detection system.  相似文献   

18.
SUMMARY

In this paper some results of theoretical and experimental investigations on the dynamic directional properties of heavy tractor-semitrailer vehicles are presented.

A nonlinear digital computer model was developed on which the theoretical system analysis is based. This model takes account of the nonUnear tire properties and the friction couple of the fifth wheel. A combination of numerical computation methods (Runge-Kutta and Newton-Raphson techniques) is used for the digital computer simulation.

Full scale road tests with articulated vehicles of 38 ton total weight were conducted for experimental validation of the used theoretical model. As input signals to the vehicle, predetermined steering wheel angle functions were used. The system output signals corresponding to these input functions were measured and stored.

A comparison of the obtained theoretical and experimental results shows a very good qualitative agreement and hence leads to the conclusion that the developed theoretical model can give consistent estimates of the basic dynamic vehicle properties.  相似文献   

19.
The general form of the railway vehicle lateral dynamic predictions seems to have been proven. If wheels are coned, rails are of uniform cross-section, and suspensions are linear, then good predictions can be obtained. If wheels are not coned, and rail sections vary, but the suspension is relatively linear, as in modern vehicles, it is still possible to obtain good predictions of critical speed for flexible suspensions. The situation with “stiff” vehicles remains unproven. In each case dynamic response calculations will be only as good as the knowledge of the track input including the rolling line term. The validity of making calculations to predict critical speeds of very non-linear vehicles has not yet been convincingly demonstrated. Validation experiments for the more difficult case of time history representation suggest the possibility of correct prediction for easily comprehensible vehicles, but even this requires an enormous amount of supportive experimental work.  相似文献   

20.
This paper describes an analytical study of the lateral dynamics of multi-articulated vehicles with multiple axles. A linear planar model of vehicle dynamics is adopted for multiple-axle vehicle combinations with an optional number of trailers. Two tractor and double-trailer combinations are examined for their directional stability and response. Non-oscillatory stability and steering sensitivity in steady-state turning and lane changing are analysed using a stability factor of multiple-axle vehicle combinations. Off-tracking in the steady-state turning of multiple-axle vehicle combinations is also analysed. Numerical calculations for oscillatory stability, steering sensitivity, and off-tracking are presented for multiple-axle vehicle combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号