首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 61 毫秒
1.
采用AKIMA方法进行交通流量趋势预测.建模是利用现场调查得到的非平稳时间序列进行数据处理、建模.并根据AIC准则进行模型定阶,最后通过实测数据进行验证,结果表明。该ARIMA模型能够获得较好的中短期预测精度,因而可用于动态交通信号控制。  相似文献   

2.
针对现阶段城市道路交通短时交通流预测精度不高的局限性,将小波变换引入到城市道路交通预测过程中,提出一种基于小波神经网络的预测方法。运用美国加州高速公路通行能力度量系统数据作为数据来源,应用小波变换和BP神经网络相结合对其进行预测,然后对预测结果数据进行分析,并对短时交通流进行综合评价。实验表明,该方法与传统的BP神经网络相比较,在短时交通流预测方面具有较好的有效性和优越性。  相似文献   

3.
应用BP神经网络来对路段短时交通流进行预测,预测精度和收敛速度都不是很理想,为了克服BP神经网络自身存在的非线性逼近缺陷,依据小波的时频域特征,将小波变换和BP神经网络结合起来,提出一种基于小波神经网络的短时交通流预测方法,给出了具体的网络学习算法,并结合实地调查数据进行了对比测试,分析结果证明了小波神经网络模型对短时交通流预测的有效性.  相似文献   

4.
王建  邓卫 《城市交通》2012,10(5):78-83,5
公交驻站时间是公交行程时间的主要组成部分,其预测精度直接影响智能公交系统中公交信息发布的准确性.为了提高公交驻站时间的预测精度,提出一种基于贝叶斯网络的组合预测模型,它由反向传播神经网络和径向基函数神经网络模型组成.首先利用两种神经网络模型预测公交驻站时间;然后利用改进后的等宽数据离散方法,将两种神经网络的预测结果和观测的驻站时间数据离散后用于贝叶斯网络学习;最后通过贝叶斯网络推理得到驻站时间组合预测结果.实例分析表明,贝叶斯网络组合模型驻站时间预测结果的误差指标均优于单一模型,证明其可有效提高单一模型的预测精度.  相似文献   

5.
基于约束卡尔曼滤波的短时交通流量组合预测模型   总被引:3,自引:0,他引:3  
为了克服单一的交通流预测模型性能不稳定的问题, 提出了基于约束卡尔曼滤波的短时交通流量组合预测模型。约束卡尔曼滤波组合预测模型以各单一预测模型的权重为状态变量, 交通流量为观测变量, 预测结果是单一预测模型的加权和, 加权系数由约束卡尔曼滤波方程递推动态确定, 最后通过广深高速公路上采集的交通流量数据对算法进行了验证。结果表明, 在不同预测步长情况下, 约束卡尔曼滤波组合预测模型要优于最佳的单一预测模型或与其持平, 并且不受某一较差的预测模型影响, 具有较高的鲁棒性。  相似文献   

6.
不同类型交通检测器所获取的交通数据中包含了不同的交通信息,交通流预测在交通管理与控制中具有重要作用,基于此,进行了多源交通数据动态加权融合和短时交通流预测。在综合分析多源数据特性及其融合优势的前提下结合遗传算法的全局搜索及小波神经网络的自适应学习优点,提出了基于多源数据融合与遗传-小波神经网络(GA-WNN)的短时交通流预测模型。通过实例验证分析,基于GA-WNN的交通数据融合方法比其他方法更有优势;同时,多源数据融合的预测精度优于单一数据源的短时交通流预测序列,从而能为交通管理者的判断决策与交通出行者的路径选择提供更准确、全面的交通信息。  相似文献   

7.
区域 GDP 的发展趋势是高速公路规划和建设的重要参考依据。 本文基于浙江省 197 8.至 201 9.年的 GDP 数据, 分析数据特性, 构建预测模型, 掌握发展规律。 首先, 将 GDP 数据转化为时间序列, 建立 ARIMA (2, 2, 0) 模型 ; 其次, 将 GDP 数据以滑动窗口的方式生成输入矩阵, 建立 BP 神经网络模型 ; 最后, 利用 ARIMA 分析 GDP 时序的线性部分, 利用 BP 神经网络分析 GDP 时序的非线性部分, 建立组合模型。 通过计算相对误差比较模型的预测效果, 三个模型的平均相对误差分别是 6.和 6.结果表明, 组合模型的平均相对误差最小, 预测效果最好  相似文献   

8.
基于小波的短时交通流预测   总被引:7,自引:0,他引:7  
本文利用小波分析方法对交通流数据进行不同尺度的分解,并对不同尺度的分量建立ARMA预测模型,再由各尺度的预测得到交通流的预测.实验显示,本方法具有较好的预测精度.  相似文献   

9.
本文利用小波分析方法对交通流数据进行不同尺度的分解,并对不同尺度的分量建立ARMA预测模型,再由各尺度的预测得到交通流的预测.实验显示,本方法具有较好的预测精度.  相似文献   

10.
针对交通小区生成交通的短时预测需求,提出了综合小波分析和BP神经网络的短时预测方法.预测方法主要利用dbN小波函数对交通小区生成交通进行小波分解,利用BP神经网络对分解后的多频段波形进行短时预测,最后通过波形重构获得交通小区生成交通的短时预测结果.在构建综合小波分析和BP神经网络短时预测模型基础上,采集交通小区的实际交通生成数据,并构建短时预测的对比模型,检验构建模型的预测精度.检验结果表明:在交通小区的生成交通短时预测方面,综合小波分析和BP神经网络的组合预测模型比单独采用BP神经网络进行预测的精度更高.  相似文献   

11.
以道路子网为研究对象,采用Elman神经网络实现道路网多断面交通流短时预测. 首先通过提取交通流空间特性对道路网进行划分,降低道路网整体分析复杂度及解空间维数,提高交通流预测的计算精度和效率;其次以实时采集的交通流数据为基础,并以重构的交通流时间序列作为输入,采用Elman神经网络实现道路网多断面交通流同时预测;最后,基于城市快速路多断面交通流量数据对短时交通流预测方法进行验证,并与BP神经网络预测结果进行对比分析. 验证结果表明,本文提出的道路网划分方法能够划分出满足预测需求的子路网,在划分的子路网上,应用Elman神经网络能够实现道路网多断面同时预测,且预测效果优于BP神经网络.  相似文献   

12.
为了提高船舶交通流量的预测精度,在BP神经网络的基础上,结合遗传算法(GA)建立一个新的预测模型.该模型利用GA自适应搜索能力和较快的收敛速度,进而确定BP神经网络中的最优权值和阈值.以青岛港2011—2019年船舶交通流量统计数据为例,进行仿真实例验证.结果表明,与传统的BP神经网络相比,该模型能显著地提高船舶交通流量的预测精度,用于预测船舶交通流量具有一定可行性.  相似文献   

13.
在总结交通流短期预M方法发展趋势的基础上,分别介绍了基于常规的BP神经网络和基于RBF神经网络的交通流量短期预测模型,并重点研究RBF网络模型的预测性能,确定了关健参数、的最优值.最后应用两种模型时北京环路实测交通流数据进行了预刚分析,实验结果表明,两种模型都可以满足实际交通流诱导的需要,BP模型在预则精度上稍优于RBF模型,但后者在学习速度和学习稳定性等方面明显优于前者.  相似文献   

14.
针对实际交通系统时变复杂和变化的不确定性所带来的交通流量随机因素影响大、非线性强、规律性不明显的特征;采用小波多尺度分解的方法,将含有综合信息的时间序列分解为多个分量特征不同的时间序列,然后采用神经网络对各个分量分别进行预测,最后用实测数据进行了验证分析。结果表明,基于多尺度分析与神经网络预测模型比单神经网络预测模型预测精度高,可用于交通流的实时动态预测。  相似文献   

15.
随着数据采集手段的不断提高和相关研究技术的发展,基于数据挖掘的模型逐渐成为交通事件持续时间研究的主要方向。根据荷兰交通部门提供的交通事件采集数据,进行分类和预处理,观察事件持续时间的频数图,并根据相关的研究按照事件典型的类别把采集的数据进行分类。使用主成分分析和逐步回归提取出显著性的影响因子,利用数据挖掘软件WEKA建立贝叶斯网络模型,用数据集中80%的数据进行学习建模,20%的数据作为测试集来检测模型的预测效果,并做出性能评价。实验结果表明,与同类数据集的其他预测方法相比,贝叶斯网络模型对于变数众多,随机性特别大的交通事件,预测精度较高,证明贝叶斯网络模型的算法是具有一定优越性和实用价值。  相似文献   

16.
针对实际交通系统时变复杂和变化的不确定性所带来的交通流量随机因素影响大、非线性强、规律性不明显的特征;采用小波多尺度分解的方法,将含有综合信息的时间序列分解为多个分量特征不同的时间序列,然后采用神经网络对各个分量分别进行预测,最后用实测数据进行了验证分析。结果表明,基于多尺度分析与神经网络预测模型比单神经网络预测模型预测精度高,可用于交通流的实时动态预测。  相似文献   

17.
为解决传统车队离散模型基于概率分布假设和现有交通流预测时间粒度过大不能应用于自适应信号配时优化等问题.在车队离散模型的建模思路上,先分析了下游交叉口车辆到达与上游交叉口车辆离去之间的关系,基于此构建了基于神经网络的小时间粒度交通流预测模型.该模型以上游交叉口离去流量分布为输入,下游交叉口到达流量分布为输出,时间粒度为5 s.最后,通过实际调查数据标定模型参数并应用模型预测下游交叉口到达流量.结果表明,与Robertson模型相比,本文模型预测结果能够更好地反映交通流的变化特征,平均预测误差减少了8.3%.成果可用于信号配时优化.  相似文献   

18.
为了进一步提高短时交通流预测的精确度,通过分析灰色模型、遗传算法和支持向量机模型的特点,提出一种组合的短时交通流预测模型.模型运用灰色模型对原始交通流数据序列进行累加,弱化其随机性,再通过遗传优化支持向量机模型进行预测,利用灰色模型将预测结果进行累减,得到最终的预测值表.以长春市某主干路交通流数据为基础,验证了该模型的有效性和可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号