首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
《汽车工程》2021,43(8)
为研究电池热失控传播过程中的热量传递路线,建立了由一维电化学模型、内短路模型、三维传热模型和副反应模型相耦合而形成的电池组热失控模型,并用针刺实验进行了验证;提出了一种基于相变材料和液体冷却的电池模组热管理方案,并分析了它对电池模组热失控传播的抑制作用。结果表明:所提出的电池热管理方案可使电池模组各个电池发生热失控的时间间隔延长,各电池温度下降的速度加快,能很好地起到抑制电池模组热失控传播的作用。  相似文献   

2.
动力电池热管理的目标不仅是保证电池模组在合适的温度范围内工作,而且要尽量保证模组内部温度均匀。液冷板是电池模组主动液体冷却系统的一个重要组成部分,此前对电池热管理的研究大多集中在液冷板流道结构及冷板排布方式对电池模组温度分布的影响,而忽略了冷却液的沿程温升对模组温度均匀性的影响。根据间壁式传热原理,提出采用液冷侧非线性强化传热的方式,以实现热源侧壁面温度均匀分布的均温液冷板结构。以某一动力电池模组液冷散热要求为例,构建了非线性传热强化液冷均温板模型,并进行了相应的数值模拟。结果表明,提出的均温液冷板能有效实现动力电池模组均温性要求。  相似文献   

3.
锂离子动力电池系统热失控扩展是造成电动汽车火灾事故的主要原因之一,文章以由圆柱形锂离子电池构成的动力电池系统为试验对象,采用加热触发单个电芯热失控的方式,通过采集电芯和模组的电压、温度等特征参数,对电芯热失控及在模组和系统范围内热扩展特性进行分析与研究。试验结果表明,电芯热失控诱发热扩展过程较为短暂,约5 s引发第二节电芯热失控;热失控发生前,触发电芯的负极采样温度高于正极,且负极温变速率平稳;热失控发生后,受正极喷射火焰影响,与之直接串接模组存在更高风险,在热扩展中受影响最大。  相似文献   

4.
根据广泛采用的均布模组式电池包结构,搭建均布模组热失控扩散试验平台,开展均布电池模组热失控扩散试验,分析均布模组热失控扩散行为特性和热流传递的规律。结合由电池包热失控引起电动汽车火灾事故真实案例和均布模组热失控扩散试验结果验证均布模组式电池包热失控的扩散模式。结果表明:均布模组式动力电池包热失控扩散模式包括模组内热失控扩散和模组间热失控扩散;首先发生热失控的模组1内热失控时间间隔分别为44、34、31 s,而受模组1的影响而发生热失控的模组2内热失控时间间隔明显缩短,分别为17、15、11 s,模组内热失控时间间隔越来越小,电池单体热失控释放的触发相邻电池单体热失控的热量随着热失控的扩展逐渐减小;模组间热失控扩展存在明显的时间间隔,通常达到若干分钟量级;电池单体在热滥用条件下的起始温度可分为热失控触发温度和热失控环境触发温度,模组间的壁面热辐射和空气热传导增大了相邻模组内的热失控扩散速度,壁面热辐射传递的热量最高可达95.18 kJ,空气热传导传递的热量最高为3.58 kJ,模组间热量的主要传递方式为壁面热辐射。为阻隔模组内热失控扩散,应加强模组间热失控扩散的防护措施。  相似文献   

5.
电动汽车用动力电池系统单一电芯热失控后经扩展导致燃烧是电动汽车灾害事故的主要发展链条之一,为进一步厘清锂离子电池热激源下的灾害表现行为,本文采用加热板直接加热的方式开展了热传导作用下方壳磷酸铁锂电池单体和模组的热失控实验研究,并采集和分析了热失控过程中的电池温度、电压及火灾动力学参数。实验结果表明,LFP单体在热传导作用下的热失控会产生大量白烟,但无明火出现,电芯防爆阀开启温度为250℃,热失控温度280℃,热失控最高温度600℃,LFP单体热失控存在电芯内部的热蔓延特征,热失控内传递时间约为1.5 min;LFP电池模组燃烧呈间歇喷射特征,且火焰传播速度逐步加快,模组最大热释放速率为260 kW,最大烟气生长速率为1.4 m2/s。LFP电池模组着火的点火能主要来自外部电压采样线因高热导致绝缘层失效后短路产生的电火花,且电芯连续热失控更易引发采样线短路,在动力电池系统设计时应尤其注意电压采集线路布置位置、绝缘层失效温度等关键参数。  相似文献   

6.
本文以60Ah的NCM811软包锂离子电池为研究对象,采用数值模拟的方法研究了加热条件下锂离子电池的热失控行为.基于锂离子电池热失控的副反应机理以及热传导理论,建立单体电池绝热热失控模型,模型误差小于2%.设计相关试验测试单体电池热失控过程中的产气特性,以单体电池绝热热失控模型为基础,建立外部加热条件下的热失控模型,模...  相似文献   

7.
为寻找合适的电池热管理系统对电池进行温度控制,降低车用锂离子电池热失控风险,基于文献挖掘,在明确了锂离子电池热管理研究出发点的基础上,对目前锂离子电池热管理技术进行综述。阐述了车用电池空冷、液冷、热管冷却、相变冷却和复合冷却方式研究现状和进展,总结了不同冷却方式的优缺点,进而提出动力锂离子电池热管理技术未来的发展方向。空气冷却和液体冷却技术虽使用较多,但控温效果较差;热管冷却和相变冷却技术虽控温效果较好,但结构复杂,成本较高。复合冷却技术将主动冷却与被动冷却结合,有效降低峰值温度的同时也提高了电池包温度的一致性,可满足不同工况的需求,应用前景较好。  相似文献   

8.
随着新能源汽车的快速发展和普及推广,锂离子动力电池的安全性问题日益突出。文章基于电池系统国标检测项目和典型汽车碰撞工况,设计了锂离子电池模组在不同加载速度和不同方向下的挤压试验,分析了锂离子电池模组的复杂力-电特性和失效行为。结果表明:电池模组在低速和高速挤压试验过程中均出现内短路和热失控现象,高SOC电池模组相比于低SOC模组在发生热失控后更容易起火燃烧。高速冲击工况下电池模组发生内短路时的侵入量比低速工况时小,说明电池模组的损伤容限随着加载速度的提高而降低。电池模组在碰撞工况下的力学特性及安全性具有典型的方向性。电池模组X方向的抗冲击能力相比Y向和Z向更强,但因电池单体堆叠热量积聚使得模组热失控更严重。研究结果为模组耐撞性能提升和整车电池碰撞防护设计提供了重要参考依据。  相似文献   

9.
为了提高锂离子动力电池使用安全性,减少因电池热失控引发的电动汽车安全事故。文章建立了锂离子电池热失控模型,仿真分析材料热稳定性对热失控影响分析。当正极材料和电解液的分解温度较低时(170℃/200℃),不论传热系数为5W/m~2/K还是10W/m~2/K,电池均发生了热失控现象。而正极材料和电解液的分解温度较高时,均未出现热失控的现象。  相似文献   

10.
针对液冷型动力电池包冷却结构多因素参数化研究,搭建电芯电-热耦合仿真模型,通过台架试验验证了电芯仿真计算的有效性。对显著影响液冷型电池包性能的冷却液流速、冷却液温度及冷管宽度和高度4个关键参数进行四因素四水平正交试验计算,基于正交模型的模糊灰色关联分析法探究四因素对电池模组最高温度和最大温差的影响权重。结果显示:对于电池模组最高温度,冷却液的温度对其影响最大,冷却液流速次之,冷却管道宽度影响最小;而对于电池模组最大温差,冷却液流速对其影响最大。通过结果分析得到优化组合方案,计算得到优化方案能使得电池组最高温度下降到32.8℃,最大温差控制在3.3℃内,冷却性能表现最佳。  相似文献   

11.
为4 A·h的21700型锂离子电池研发了蜂巢式液冷电池模块,并通过搭建的试验平台测定其充/放电过程的传热特性。结果表明:在25℃环境温度下,0.5C恒流恒压充电和1C恒流放电过程中,电池模块的最大温差均被控制在2℃以内;40℃环境温度下,1C恒流放电过程中,当冷却液流量大于1 L/min时电池模块的最大温差能保持在所要求的5℃以内。说明蜂巢式液冷电池模块冷却性能优良,可为未来电池热管理方案的设计提供技术支撑。  相似文献   

12.
随着电动汽车销量的增加,动力电池的热安全问题日益受到关注,电池温度过高会影响电池的性能,严重时会导致热失控的发生。为研究锂电池的放电特性,探究不同因素对电池组往复流风冷散热的影响规律,基于外接UDF的Fluent仿真计算,利用正交试验,分析了入口风速、冷却空气温度、往复流周期三个参数对电池温度分布的影响规律。研究结果表明往复流周期对电池组温度分布均匀性的影响最大,入口风速对电池组最高温度影响最大,而冷却空气温度影响则相对较小。在此基础上,进一步获得了往复流散热性能的最优匹配参数。  相似文献   

13.
戴海燕  王玉兴 《汽车工程》2020,42(5):665-671,687
为研究电池组的排列与布置方式对电池热特性的影响,本文中以18650锂离子电池为研究对象,建立了单体电池的电化学热力学耦合模型。利用模型仿真和实验测量获得了不同放电倍率时的电池表面温度随放电容量的变化关系,实验数据与仿真数据基本吻合,模型准确。基于单体耦合模型,分析了6×5动力电池模组的不同排列与布置方式下的热特性。结果表明:间距太小或太大均会使平均温度增加,本案例电池间距24 mm时平均温度最低;间距越大,温差越小,温度分布均匀性越好;间距一定,交叉排列散热效果优于对齐排列,且空间利用率更高。电池的排列和间距对电池散热有重要影响,锂离子动力电池组设计过程中应充分考虑。  相似文献   

14.
电动汽车动力电池散热需求会受到外部环境温度、风速和负载电流变化等因素的影响,如果不及时散热,动力电池的温度会迅速攀升,进而影响电动汽车的驾驶性和安全性。基于此提出一种锂离子电池非线性冷却优化方法。首先,通过对锂离子电池生热、散热机理分析,建立考虑传热系数随冷却液流速变化的锂离子电池集中热模型,通过电池特性测试试验确定电池内阻和熵热系数等热物性参数,并与AMESim模型对比,验证模型的有效性。然后,基于电池冷却系统非线性和易受负载电流变化影响的特征,提出一种考虑电池冷却系统的稳态特性以及参考变量前馈功能和闭环反馈消除静态误差机制的非线性冷却优化方法,并对其稳定性和鲁棒性进行研究。仿真结果表明:在NEDC-HWFET-US06组合工况下,非线性冷却优化方法调节下的电池温度与目标温度的最大偏差较PID方法减小了0.8 K,并且冷却过程的能耗降低了6.3%,具有更好的调节效果。  相似文献   

15.
本文对锂离子电池的应用特性进行了总结,分析了电压、电流、温度三大参数对锂离子电池健康和寿命的影响,尤其是充电截止电压,化成电流和高温情况对电池容量的影响。以不同材料之间的比较试验为基础,重点分析了高充电截止电压,充电电流和高温对材料稳定结构的破坏,从而引发电池循环寿命降低的原理。最后基于电池使用中放电电流和环境温度应力为参数,进行了基于电压、电流、温度的锂离子电池循环寿命预计模型研究,得到锂离子电池循环寿命预计基础模型,为混合动力汽车锂电池3参数与寿命关联模型构建提供了重要的研究基础。  相似文献   

16.
电池组在高环境温度下以高倍率放电时,电池组温度过高、温差大,极易引发安全问题。笔者针对这一问题设计了一种新的耦合式电池热管理系统。以采用纯石蜡冷却模型作为初始模型,首先探讨不同膨胀石墨质量分数的复合相变材料对于电池组热性能的影响,得出:在30℃的环境温度下,电池组以4C倍率放电时,采用EG质量分数为12%的复合相变材料对电池组进行冷却最优。在最优复合相变材料的基础上引入液冷系统,构建克里格近似模型,采用NSGA-Ⅱ遗传算法对耦合系统寻优,得出的预测结果精度较高误差最大仅为0.21%。利用算法寻优得出的最优解与初始模型相比,电池组最高温度下降5.29℃降幅为11.46%,最大温差下降0.12℃降幅为54.09%。结果表明:相变材料与液体冷却耦合热管理系统对电池组控温效果显著。  相似文献   

17.
动力电池热失控是电动汽车安全事故的致命隐患,为了减少电池热失控而引发的一系列电动汽车自燃事故,文章对电动汽车自燃和电池热失控的机理进行分析,从电池包防火能力、电池热失控预警系统、整车非金属阻燃性能几个方面,来提升电动汽车的整车防火安全能力,并对电动汽车的防火安全提出了合理化建议。  相似文献   

18.
风冷技术虽已广泛应用于动力锂电池系统,但目前锂电池系统风冷的研究主要集中在如何利用电芯间隙冷却,电芯排布方式和模组进出风口形式的设计上,然而这些方法在实际应用中具有一定的限制。针对以上问题,本文在模组底部加装导热垫及散热片,同时利用计算流体力学的方法对该技术方案进行数值模拟,并分析对比加装不同形式的散热片,电池模组内电芯温度的差异。结果表明,模组底部加装散热片能够快速的将电芯的热量传递给冷却气流,并有效降低电芯间的温差;交错翅片型散热片的散热性能优于平直翅片型散热片;翅片数量及厚度在一定程度上影响了散热片的散热性能。  相似文献   

19.
选取了4种锂离子电池的商品化隔膜产品,采用傅立叶变换红外光谱仪、X射线衍射仪和扫描电子显微镜等手段,对隔膜材料的组成和结构特性进行表征;采用热重分析仪和差示扫描量热仪,对隔膜材料的热性能进行分析;同时,进行隔膜材料的机械性能、耐热性能和吸液性的试验。结果表明,非聚烯烃类隔膜具有较好的耐热性能,但机械性能较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号