首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 62 毫秒
1.
车辆轨迹蕴含着大量丰富的交通流时空信息,对于全面解构城市交通路网运行具有至关重要的意义.传统车辆轨迹重构模型大多基于定点线圈检测数据或者浮动车轨迹数据作为输入数据,并且普遍未考虑过饱和交通状态.本文提出了一种基于车辆身份感知数据的车辆路段轨迹重构方法,通过构建一种绿灯相位回溯框架,基于交通流激波理论分段重构车辆行程轨迹,每次回溯过程包含两个主要步骤,即估计车辆状态和分状态重构车辆行程轨迹;然后在Paramics 微观交通仿真平台上对本方法模型的准确性进行了验证.结果表明,该方法在各种饱和状态下均能达到令人满意的应用效果.  相似文献   

2.
车辆轨迹蕴含着大量丰富的交通流时空信息,对于全面解构城市交通路网运行具有至关重要的意义.传统车辆轨迹重构模型大多基于定点线圈检测数据或者浮动车轨迹数据作为输入数据,并且普遍未考虑过饱和交通状态.本文提出了一种基于车辆身份感知数据的车辆路段轨迹重构方法,通过构建一种绿灯相位回溯框架,基于交通流激波理论分段重构车辆行程轨迹,每次回溯过程包含两个主要步骤,即估计车辆状态和分状态重构车辆行程轨迹;然后在Paramics 微观交通仿真平台上对本方法模型的准确性进行了验证.结果表明,该方法在各种饱和状态下均能达到令人满意的应用效果.  相似文献   

3.
针对现有基于CNN、GRU及CNN-LSTM的船舶轨迹预测模型精度不高、运行时间较长等问题,提出一种基于卷积神经网络(Convolutional Neural Networks, CNN)和门控循环单元(Gated Recurrent Unit, GRU)的船舶轨迹预测混合模型(CNN-GRU).构建了基于船舶AIS信息的船舶轨迹特征表达方法,以目标船舶连续4个时刻的轨迹特征值作为输入,以第5个时刻轨迹特征值作为输出,训练构建的CNN-GRU轨迹预测网络,对未来船舶轨迹进行预测,并与现有模型进行对比.实例验证表明:CNN-GRU模型的预测精度显著提升,经度误差不超过3×10-5(°),纬度误差不超过5.5×10-4(°),相较于CNN-LSTM模型,预测效率显著提高,运行时间减少19.1 s.  相似文献   

4.
5.
6.
船舶自动识别系统(Automatic Identify System,AIS)数据可以实时体现船舶当前时刻的具体动态,采用传统BP(Back Propagation)神经网络模型的船舶轨迹分析预测方法,在计算中直接将航艏向数据纳入模型,没有考虑船舶航艏向在零度附近变动时带来的实际方向变动幅度与数据变化幅度存在较大偏差问...  相似文献   

7.
分析了船舶AIS数据的时间序列特征与船舶操纵特性, 提出了改进的Sliding Window在线压缩算法; 计算了277艘船舶总计1 026 408个坐标点的AIS轨迹数据, 确定了合适的压缩阈值, 分析了距离阈值与角度阈值对算法压缩率的敏感程度; 根据压缩率图像的阶跃点, 推荐了高、中、低3个档位的距离阈值和1个角度阈值, 对比了Douglas-Peucker算法和改进Sliding Window算法的压缩率与压缩效率。试验结果表明: 随着压缩率的提高, 压缩后所剩下的点越来越少, 数据所保留下来的有用信息也越来越少; 压缩率与距离阈值、角度阈值均呈正比; 经量纲为1化处理的高、中、低档位压缩距离阈值分别为43%、38%、33%船长; 距离阈值为130m时, 角度阈值超过9°后压缩率平稳, 所以推荐角度阈值为9°, 与《海港总体设计规范》 (JTS 165—2013) 中风流压差角8°相接近; 随着距离阈值的增大, Douglas-Peucker算法和改进Sliding Window算法压缩率趋于相近, 当距离阈值为120 m时, Douglas-Peucker算法压缩率仅比改进Sliding Window算法高1.74%;在5种距离阈值的情况下, Douglas-Peucker算法运行所用的平均时间是改进Sliding Window算法的5.39倍; 随着数据量的增大, 2种算法压缩效率的差距更加明显。可见, 改进的Sliding Window算法能在降低压缩风险的同时大幅提高压缩效率, 可以在数据持续更新的状态下一直保持压缩状态, 与普通压缩模式相比, 系统所占用的资源更少, 处理效率更高, 可用于船舶轨迹数据处理、电子海图显示与对船舶关键行为特征提取等方面。  相似文献   

8.
基于船舶自动识别系统(Automatic Identification System, AIS)数据的船舶典型轨迹挖掘需要经过两个重要步骤,一是压缩 AIS 数据,二是聚类压缩后的 AIS 数据。传统的DP(DouglasPeucker)压缩算法,只考虑船舶轨迹的压缩形状,忽视了船舶航行中其他重要信息。为解决此问题,把对地航速和航向加入到DP算法的压缩过程中。在AIS轨迹聚类方面,传统谱聚类方法只对船舶轨迹的位置进行相似性度量,没有考虑船舶轨迹的其他维度,针对此问题,提出多属性轨迹相似性度量方法。由于不同的输入参数影响着最终的聚类质量,引入Calinski-Harabasz指标评价谱聚类算法,实现聚类参数的自适应选择。利用山东威海水域的实际AIS数据进行实例研究,并与传统谱聚类算法做比较实验。实验结果表明,利用该方法提取到的典型轨迹符合真实水域的交通情况,相较于传统谱聚类方法具有更高的聚类质量。  相似文献   

9.
车辆移动轨迹的不确定性及异常点段的存在使其在数字交通领域的应用面临挑战.本文构建基于数据增强的LSTM-AE-Attention深度学习模型,进行车辆轨迹重建和异常轨迹识别.首先,使用对抗生成网络和贝塞尔样条曲线从样本量和种类两方面扩充数据集,实现数据增强;其次,通过自编码网络与长短时记忆神经网络提取轨迹特征并完成轨迹...  相似文献   

10.
提出了一种低秩矩阵补全的改进方法以研究道路交通量数据缺失值插补问题。应用基于核范数的低秩矩阵补全对交通量数据矩阵中的缺失值进行第1轮插补; 通过层次聚类算法将交通量数据划分为不同类别, 使得同类中的数据具有较强相关性, 异类中的数据具有较弱的相关性; 在每类样本上应用低秩矩阵补全得到缺失值的第2轮插补; 为了减少聚类数的影响, 提出最小二乘回归集成学习方法将不同聚类数下的插补结果进行融合, 得到最终的交通量数据插补结果; 用美国俄勒冈州波特兰市的交通量数据比较了5种方法的插补误差, 并分析了不同聚类数和距离度量方法的影响。研究结果表明: 在完全随机缺失模式下, 缺失率为10%~60%时, 其相对于传统的低秩矩阵补全模型的插补误差降低了5.93%~9.11%;在随机缺失和混合缺失模式下, 插补误差也分别降低了8.32%~9.55%和8.14%~9.20%;集成不同聚类数下的多个插补结果比单一聚类数下的插补误差降低2.62%~4.76%。可见, 在3种数据缺失模式下, 改进低秩矩阵补全方法降低了交通量数据的插补误差, 能有效提高插补后交通量数据的有效性。  相似文献   

11.
建成环境对出行方式的影响已有丰富的研究成果,然而对不同出行方式间相互关系影响的研究仍不够细致。本文以网格化的形式细化研究区域,采用土地利用属性和交通属性的六小类要素作为特征变量刻画城市建成环境的特征。基于出租车行程的OD点与地铁站点的空间关系,将出租车与地铁竞合关系表征为 SCPE(Subway-competing,与地铁竞争)方式、SE(Subwayextending,延伸地铁)方式和SC(Subway-complementing,补充地铁出行)方式,并利用多尺度地理加权回归研究建成环境对竞合关系(SCPE、SE、SC)的影响机理及其空间效应。针对兰州市的案例研究表明:SCPE、SE、SC方式具有显著的空间异质性;多尺度地理加权回归能够刻画SCPE、SE、SC方式与建成环境间依赖关系的空间异质性及其尺度差异,其估计结果更为可靠;建成环境各要素对SCPE方式的影响较为平稳,SC方式对公交站点密度和道路密度要素非常敏感,存在高度的空间异质性,SE方式亦对公交站点密度要素非常敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号