首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
以出行经济成本、时间成本、舒适性成本为基础,建立了城市居民广义出行费用模型,将广义出行费用函数作为效用函数,对传统Logit模型进行改进,从广义出行费用的角度,研究广义出行费用对居民出行行为的影响。通过Transcad对改进的Logit模型进行参数标定,结果表明出行直接经济成本的支付方式对小汽车出行有很大影响,其中停车费用起着关键性作用。当CBD内停车收费达到15元/h,CBD外公共交通换乘地区停车收费达到10元/h时,小汽车出行转移比例达到20%。制定合理的分区停车收费措施,增加小汽车广义出行费用,同时提高公共交通服务水平是改善城市居民出行结构、缓解中心区拥堵的有效措施。  相似文献   

2.
研究我国客运专线建成后,城际间旅客出行广义费用及各客运产品的分担率.选择经济性、快速性、方便性、舒适性和安全性为衡量指标,建立各运输产品广义费用函数,根据旅客出行意愿调查结果,对广义费用进行模糊评价,从而预测得到各运输产品分担率.最后对北京至石家庄客运通道各种客运产品的分担率进行计算.  相似文献   

3.
为研究城市综合交通网络结构,帮助决策者合理配置城市交通资源,本文研究了城市综合交通网络中基于广义出行费用的各交通方式优势出行距离概率密度曲线.分析居民出行的广义出行费用(即交通方式的服务水平,包括出行时间和票价等)可以确定城市中常见交通方式出行所需的平均花费水平,从而构建出同一出行网络中不同交通方式优势出行距离的概率密度曲线,对概率密度曲线进行分析和拟合可以得到固定形式的基于广义出行费用的城市综合交通方式优势出行距离概率密度模型.最后,以南京市为例进行实证分析.  相似文献   

4.
以经济性、快速性、便捷性、舒适性及安全性为衡量指标,建立乘客出行广义费用函数;结合非集计理论和方法,构建中长距离通道客流分担率模型.并以武汉-广州客运通道为例,分析不同时间价值下客流结构的变化情况,发现普通铁路更加符合旅客的出行偏好,其客运分担率高于45%.最后,以利润为指标,对高速铁路运营策略进行了分析.研究结果表明,由于普通铁路与高速铁路之间的竞争关系,高速铁路运营利润及铁路总利润难以同时达到最优;当以高速铁路运营利润最大为目标时,高速铁路票价和旅行速度分别为275 元和325km/h;当以铁路总利润最大为目标时,高速铁路票价和旅行速度分别为350元和300km/h.  相似文献   

5.
选取了陕西省内距中心城市西安350 km范围内的咸阳、渭南、黄陵、延安4个节点城市, 搜集了相关公铁复合城际走廊上高速铁路、普通铁路、长途客车、小汽车高速出行的出行量、车内时间、票价或通行费等客流特征参数, 梳理了各种城际客流分担分析方法; 构建了距离转移曲线模型和多元Logit模型, 通过曲线拟合、试算和回归分析对模型进行了标定, 并根据模型标定结果分析了客流分担率对距离、时间和费用的敏感性, 得到区域城际多模式客流分担特征, 给出城际通道规划管理的相关建议。研究结果表明: 高速铁路、普通铁路和小汽车高速出行3种模式的分担率-距离转移曲线拟合结果理想, 决定系数均在0.94以上; MNL模型在车外时间取90~150 min时, 拟合效果较好, 决定系数均在0.79以上, 且在时间价值取50~70元·h-1情景下决定系数达到峰值; 随着城际出行距离的增加, 出行者选择从小汽车高速出行转移到城际铁路出行, 且高速铁路较普通铁路更有优势, 西安与近距离的咸阳之间小汽车高速分担率达96.91%, 与远距离的延安之间高速铁路分担率达53.66%, 普通铁路分担率达30.58%;以车外时间为120 min为例, 高速铁路、普通铁路、长途客车、小汽车4种出行模式的阻抗系数分别为0.029~0.044、0.034~0.042、0.030~0.040、0.028~0.048, 小汽车高速出行和高速铁路增长幅度较大, 2种出行对费用更加敏感, 在时间价值取60元·h-1条件下, 4种出行模式的阻抗系数为0.038~0.042, 4种出行对广义时间敏感性无明显差异; 建议进一步挖掘更多城市群城际通道客流分担规律, 并精确考虑城际出行链的城市端细节, 以更好地指导城际走廊的宏观规划与管理。   相似文献   

6.
归纳总结出行者效益的组成框架,并依据经济学中消费者剩余理论,改进新交通项目投入运营后出行者效益的计算方法。给出该方法中的关键参数—广义出行费用计算模型,同时讨论广义出行费用计算模型中,出行舒适性的时间评价值定量方法。  相似文献   

7.
以经济性、快速性、便捷性、舒适性及安全性为衡量指标,建立乘客出行广义费用函数;结合非集计理论和方法,构建中长距离通道客流分担率模型.并以武汉—广州客运通道为例,分析不同时间价值下客流结构的变化情况,发现普通铁路更加符合旅客的出行偏好,其客运分担率高于45%.最后,以利润为指标,对高速铁路运营策略进行了分析.研究结果表明,由于普通铁路与高速铁路之间的竞争关系,高速铁路运营利润及铁路总利润难以同时达到最优;当以高速铁路运营利润最大为目标时,高速铁路票价和旅行速度分别为275元和325km/h;当以铁路总利润最大为目标时,高速铁路票价和旅行速度分别为350元和300km/h.  相似文献   

8.
分析了摩托车运行特性、安全特性及其对城市交通和环境的影响,并基于广义费用建立了摩托车及其可替代方式的出行成本模型。以江门市区摩托车交通为例,通过对居民出行和社会经济状况的调查,得到摩托车交通的出行特征,应用广义费用模型估算出各种交通方式的出行成本,提出了可行的发展对策,供决策者参考。  相似文献   

9.
快车对慢车的越行影响了市域轨道交通快慢车运营组织下乘客换乘选择行 为.本文考虑乘客的时间感知差异,按照乘客出行起讫点的车站种类划分乘客,建立出行 广义费用模型;采用了Logit 模型求解案例中各类乘客的路径选择概率,并分析影响因素 的灵敏度.结果表明:换乘时间感知系数或始发站发车间隔增加时,乘客选择需换乘路径 的概率减小而选择慢车直达的概率增加;乘客出行途经车站数量或快车越行慢车次数增 加时,乘客选择需换乘路径的概率增加而选择慢车直达的概率减小.说明快慢车运营方式 适用于线路较长且乘客出行距离较远的市域轨道交通,能诱发乘客为了节省出行时间而 选择可能需要换乘的快车.  相似文献   

10.
根据我国铁路客运站建设条件限制以及与城市相和谐的建设要求,将影响客运站选址的因素分为硬性因素和软性因素两类。通过硬性因素比选得到初步选址方案集合,将城市公共交通网络能力纳入客运站选址的软性因素,结合车站能力和资金限制2个软性因素,以旅客出行成本、车站建设成本、车站运营成本和城市交通运营成本最小为目标,建立0-1整数规划模型。以某市实际情况为例建立模型,利用Lingo软件求解得到客运站的选址方案以及城市公共交通网络中公交车和地铁列车的增加方案。计算结果显示,最优方案是对原有的两座客运站进行改造并在市郊新建一座高速铁路客运站。为满足旅客的出行要求,相应的出行小区到3个高速铁路客运站需要增加一定数量的公交车和地铁车辆。实例证明了基于此模型所得到的方案符合实际情况。  相似文献   

11.
基于拉格朗日的高速铁路车站作业优化   总被引:1,自引:0,他引:1  
本文从Job-Shop 调度角度出发,以列车为待加工的“工件”,将车站接车进路、 到发线和发车进路看作“加工机器”,列车在车站的走行与停站看做不同的“作业工序”, 把高速铁路车站作业问题抽象成Job-Shop 车间调度优化,以设备能力、冲突进路、停站时 间为空间和时间约束,以最小化到发线的占用时间为优化目标,建立高速铁路车站作业 优化模型.采用拉格朗日方法松弛原模型的约束条件,建立车站技术作业问题的拉格朗日 对偶松弛问题,设计了高速铁路车站作业优化模型算法.并以高速铁路的某一车站为实例 进行验证,实例表明,该算法可以有效地化解车站作业进路冲突和实现到发线运用时间 的最小化.  相似文献   

12.
运用复杂网络理论,基于L空间构建了以列车数量、运行时间为权重的高速铁路运输服务网络(该网络中包括525个车站、2 666列列车).在此基础上,利用度、强度、介数等复杂网络评价指标对两种网络进行对比分析,明确两种网络的不同运输意义,节点在两种网络中的不同作用.然后,充分考虑高速铁路路网乘客出行特征,以城市枢纽为研究重点、以运行时间为权重重构我国高速铁路运输服务网络,对比重构前后复杂网络指标值的变化,重点分析网络重构前后的网络特征、典型枢纽的变化.最后,基于分析结果为城市枢纽的客运换乘组织和车站分工提出参考方案.  相似文献   

13.
城际客流具有时段分布不均衡特点,表现为高峰时段一票难求而低峰时段客座率低。为均衡客流、提高城际高铁收益,选取客运通道内不同时段车次进行差别定价。考虑旅客选择行为的差异性和有限理性,采用潜在类别分析对旅客进行分类,选取票价和时段价值两个影响因素, 建立双参照点的旅客平行车次产品效用模型,以累积前景值刻画异质旅客对平行车次的出行效用。基于累积前景值构建以铁路企业收益最大,旅客广义出行费用最小的分时定价双层规划模型,设计基于灵敏度分析的启发式算法求解。最后以南宁-北海为例对高峰、非高峰时段平行列车进行实例分析,结果表明,本文提出的分时定价方法能提升收益约2.5%,且高峰、非高峰时段的客流更加均衡。  相似文献   

14.
列车时刻表的编制是铁路旅客运输组织的关键问题,如何优化时刻表,最大限度缩短旅客的旅行时间,具有重要的理论和现实意义.然而,既有基于客流需求的时刻表优化模型大多数假设列车顺序固定或不允许列车间任意越行,离实际尚有一定差距.针对这一问题,本文以最小化旅客在站等待时间和在车旅行时间的线性加权为优化目标,综合考虑列车停站、区间运行、安全间隔、列车容纳能力等约束,在定序无越行和定序有限越行模型的基础上,构建了更一般的非定序任意越行混合整数二次规划模型,并利用ILOG CPLEX分别进行求解.最后,以某城际高铁为例进行案例研究.结果表明,本文所提的非定序任意越行模型求解质量最好,且能有效减少旅客全程旅行时间,具有可行性.  相似文献   

15.
为研究高速铁路旅客乘车行为选择机理,以非集计离散选择模型理论为依据,分析旅客乘车选择的影响因素,结合2013 年京沪高速铁路旅客出行RP调查数据,以G类高速列车和D类高速列车作为旅客乘车方式选择肢,设置影响旅客乘车选择的特性变量,即旅客主体特性、出行特性、列车服务特性及相应的取值方法,建立旅客乘车方案选择MNL模型.运用SPSS对模型参数进行标定,结果表明,公费出行、月收入较高及出差的旅客偏好选择G类高速列车;自费出行、月收入较低及旅游探亲的旅客偏好选择D类高速列车.上述结论与调查结果基本一致,命中率等参数的计算亦验证了模型的有效性.  相似文献   

16.
铁路电分相布设位置与线路纵断面设计相互影响,两者若不匹配会产生较高的列车牵引能耗与用户时间成本,甚至造成列车在分相区坡停等安全事故。本文以铁路电分相位置以及距离电分相中心里程一定范围内的纵断面设计方案为研究对象,建立电分相布设及纵断面设计协同优化模型,在满足铁路设计规范与列车运行安全的相关约束下,使列车运营能耗成本、用户时间成本和建设成本之和最小。设计基于间接编码的改进遗传算法进行求解,以某高铁线路为案例进行分析。结果表明,与实际电分相和纵断面布设方案相比,本文模型优化得到的方案可减小列车过分相后的速度损失及二次牵引能耗与时间,同时能降低线路建设成本,总成本节约率达 9.2%。  相似文献   

17.
复杂高铁站作业计划的编制质量是影响整个路网运输能效发挥的重要因素,为快速编制高质量车站作业计划,分析了各类列车在车站列车和调车作业,构建列车作业链,并描述车站作业计划优化问题的本质,结合车站布局和轨道电路分布,构建基于微观层面的车站作业计划优化模型;针对实际问题变量巨大,约束条件复杂的特点,将模型转换为对偶形式,在不需要初始解的情况下,通过拉格朗日松弛算法求解,并通过基于对称性破缺规则的分支定界法快速对松弛问题的解可行化,获得可行车站作业计划。以北京南站为例测试模型和算法,计算时间不超过 20 min,对偶间隙不超过10%,计算结果无冲突,表明该方法能够实现复杂高铁站高质量列车作业计划的快速求解,具有实际应用意义。  相似文献   

18.
为保证整个路网列车运行的效率与安全,基于列车计划运行图与实际运行图数据,提出了一种高速铁路与既有线调度指挥系统协同性评价体系与方法.首先,从跨线列车在衔接站的调度指挥流程出发,对高速铁路与既有线调度指挥协同性作用机理进行了系统地分析;其次,运用协同学理论研究了两系统在组织日常生产作业中的协同关系,并构建了两系统间的协同性评价指标体系;最后,基于协同分析矩阵理论建立了高速铁路与既有线调度指挥系统协同性评价模型,对两系统间协同化作业程度进行定量分析.研究结果表明:两系统间的整体协同程度为0.975,且衔接站的组织工作是否能够高效、有序的进行是影响系统间协同性的关键因素.   相似文献   

19.
以技术提升促速度提高为背景,研究运输速度对客运业的影响.首先,系统回顾了历史上航空运输、铁路运输和公路运输速度的进步,以及助推速度提高的技术支撑;其次,以运输速度丰富内涵为切入点,从运输速度可靠性和快速性两个维度分别探讨了未来客运市场的基本特征;第三,在未来不同运输方式提速的背景下,明确各运输方式在不同客运市场的功能定位,并分别构建不同出行方式的效用函数和乘客广义出行成本函数,进一步运用演化博弈理论和Logit分担率模型研究未来速度提升对不同客运市场交通结构的影响.研究结果表明:首先,影响乘客方式选择的主要因素是全过程“门到门”速度,全过程“门到门”出行时间包含在车时间和节点时间.其次,不同运输方式速度提升,换乘效率提高和节点时间压缩均可能影响不同客运市场的交通结构;在短距离客运市场,压缩端点时间对交通结构影响更为显著;在中长距离客运市场,提升运输速度可以显著改变交通结构.设计速度250 km/h的高速铁路与民航竞争的临界距离不到800 km,但高铁设计时速提高到350 km/h时临界点可望推至1 200 km.第 三,在城市内,运输速度的可靠性对于通勤通学客流影响显著.第四,科技是速度提升的重要支撑,但也应关注技术实现背后的经济性和市场购买力.第五,研究与速度相关产品的差异化定价是助推企业提供高质量出行产品的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号