共查询到20条相似文献,搜索用时 0 毫秒
1.
基于个体最优位置的自适应变异扰动粒子群算法 总被引:2,自引:0,他引:2
针对粒子群算法在寻优时容易陷入局部最优的不足,提出了一种基于个体最优位置的自适应变异扰动粒子群算法AMDPSO (adaptive mutation disturbance particle swarm optimization).该算法以粒子群算法为基础,加入扰动,当满足自适应条件时,粒子以个体最优位置为依据进行变异操作.将该算法运用于6个测试函数,并与惯性权重粒子群算法、收缩因子粒子群算法以及差分进化算法进行了比较,结果表明:AMDPSO能在寻优过程中让粒子跳出局部最优,保持种群多样性,具有更好的收敛速度和优化性能. 相似文献
2.
基于微粒群本质特征的混沌微粒群优化算法 总被引:1,自引:0,他引:1
在总结对微粒群优化(PSO)算法本质的主要研究成果的基础上,提出了基于微粒群本质特征的混沌微粒群优化(CPSO)算法.该算法用混沌搜索方法代替随机数产生器在较好的区域搜索最优解.为了提高粒子群的多样性,用由粒子邻域内若干个个体最优位置依其适应值加权平均得到的中心位置代替标准PSO算法的全局历史最优位置.然后,根据粒子个体最优位置与上述中心位置间的距离自适应地调整混沌搜索区域半径.用几个经典测试函数的仿真结果及与其它几种PSO算法的比较结果验证了新算法的有效性. 相似文献
3.
在考虑交通量短时变化的时空特性和波动性基础上,建立了非线性交通量短时预测模型.根据我国城市道路交通流非线性、时变性、随机性等特点,提出自适应粒子群优化算法对非线性交通量短时预测模型进行在线修正.该自适应粒子群优化算法采用两步优化策略,对算法参数进行调整,避免算法早熟收敛,有效提高了算法的运算精度和效率.利用城市道路的实测数据,通过Mat-lab软件工具箱对该模型进行计算机仿真验证. 相似文献
4.
针对标准粒子群优化算法在信息共享机制的不足,提出基于邻域空间的混合粒子群优化算法。该算法修改了粒子速度更新方程,提出了一种将模式搜索算法嵌入粒子群优化算法新方法。通过4个典型的测试函数的实验研究,表明了所提出的算法充分发挥了模式搜索算法强大的局部搜索能力和基于邻域空间的粒子群优化算法的全局寻优能力,很好地平衡了算法的全局“探索”与局部“开发”。新算法具有优化精度高、鲁棒性强的特点,特别适合对高维多峰函数进行优化。 相似文献
5.
6.
针对标准粒子群优化算法对永磁同步电机多参数辨识精度低与收敛慢的问题,设计了一种自适应自治群组粒子群优化算法进行辨识,并在Matlab/Simulink中搭建参数辨识模型.仿真结果表明:改进后的算法对永磁同步电机多参数辨识的整体精度更高,收敛速度更快. 相似文献
7.
基于微粒群算法的多目标列车运行过程优化 总被引:2,自引:1,他引:2
为客观地描述列车的运行过程,建立了列车运行过程的多目标优化模型,并用微粒群算法求解该模型.针对多目标微粒群优化(MOPSO)算法的不足,提出了相应的改进措施和解的多样性保持策略.仿真结果表明,提出的优化列车运行过程的改进MOPSO算法可以在一次运行过程中获得多组列车操纵控制策略,清晰地显示出各性能指标随控制策略变化的趋势,控制序列转换次数大大降低,每组控制策略都可以在能耗、运行时间和停靠准确性之间获得很好的折衷效果,可以根据列车运行状况选择恰当的策略控制列车,以获得预期的结果. 相似文献
8.
提出了一种基于邻域极值数的协同粒子群优化算法。该算法将种群分为若干个独立进化的子种群。根据邻域极值数确定各子种群的生存状态。根据子种群的生存状态对子种群实施相应的控制操作,提高子种群的搜索能力,实现子种群之间的信息共享,共同进化。测试结果表明基于邻域极值数的协同粒子群优化算法是一种高效稳健的全局优化算法。 相似文献
9.
张伟丰 《湖北汽车工业学院学报》2008,22(3):25-29
为了提高粒子群算法的收敛速度和全局寻优能力,用多智能体遗传算法对粒子群算法当前搜索到的全局极值进行局部寻优.用搜索到的更好的解在下一次迭代中引导粒子进行搜索从而获得更快的收敛速度和更好的全局收敛性。对函数优化和神经网络训练的仿真实验表明.此算法能更快的收敛到全局最优解。 相似文献
10.
基于改进粒子群算法的工程项目综合优化 总被引:2,自引:0,他引:2
为解决现有粒子群优化算法进化过程中"早熟"的问题,提出了一种改进的粒子群优化算法HSPSO.算法采用多子群分层策略,以提高收敛速度和优化精度.为求解工程项目的综合优化问题,建立了工期-成本-质量的数学优化模型和多目标优化模型.通过实例对标准粒子群优化算法(SPSO)和差分进化(DE)算法进行了比较,并采用HSPSO算法进行多目标优化.最后,用枚举法验证了模型的合理性和算法的有效性.与已有研究相比,HSPSO算法能在种群规模较小(20个粒子)的情况下,快速找到满意的解(平均迭代次数不超过20次). 相似文献
11.
针对我国机场群发展不平衡、航线同质化程度高等问题,建立了以航班准点率、航空公司市场份额、旅客损失时间和航班功能定位指标最大化的航班时刻优化模型,将一级国际枢纽机场运行效果差的航班分配至周边机场.笔者在满足机场群内各机场起降容量限制、航班唯一性和航班连续性的条件下,设计改进的粒子群优化算法进行求解.以长三角机场群的航班时刻资源为例进行实例验证.研究表明:模型能够有效调整枢纽机场的低效航班至周边机场,使得机场群内各机场航班分布较为均衡,有效控制各时段航班架次的变化趋势,优化效果显著. 相似文献
12.
为弥补目前结构抗风优化仅针对高层建筑的不足,采用量子粒子群算法对一大跨屋盖结构进行了抗风优化.基于风洞试验数据库获得等效静力风荷载,并根据型钢表组成离散变量搜索空间.通过约束违反协调系数,构造了一种新的适应值模型,进一步建立了粒子越界处理方法,以保证优化的可行性和收敛性.通过10次运行计算以确定门式刚架的最优设计,并在全风向角下对优化结果进行校核.研究结果表明,目标函数随迭代单调递减收敛,总质量标准差仅为其平均值的4%,平均迭代24次,说明量子粒子群算法用于门式刚架抗风优化具有较好的健壮性和计算效率. 相似文献
13.
配送系统设计时,除了使系统的总费用最小外,还要满足各个需求点对时间的要求.综合考虑选址的物流成本和服务水平,在说明了建模的假设条件后,以经济性为决策目标,以时效性为约束条件,建立了带时效性约束的单个产品混合整数非线性规划模型.根据模型的特殊结构和粒子群算法解决复杂问题的优势,运用粒子群算法进行了求解.将多配送中心选址模型及算法应用于某一快递企业的选址问题,用实际调研的数据得出了一个最优选址方案. 相似文献
14.
研究利用遗传算子对粒子群算法进行优化设计,建立了基于遗传算子的粒子群算法多源数据融合模型。该模型克服了粒子群算法在训练过程中容易陷入局部极值的缺陷,得到了更高的学习精度和更快的收敛速度。利用多传感器检测到的目标船舶航迹点数据进行了融合验证,MATLAB仿真结果表明,基于遗传算子的粒子群算法融合模型融合后的目标船舶航迹点比各传感器单独检测到的目标船舶航迹点数据更加精确,更适用于船舶航迹的跟踪及预测。 相似文献
15.
为使道路使用者在出发前获得具有高实时性和可靠性的行程时间预测信息,提高出行效率,需提升高速公路行程时间的预测精度。鉴于此,将生物学中粒子群优化算法(Particle Swarm Optimization Algorithm, PSO)引入小波神经网络(Wavelet Neural Network, WNN)中,构建基于粒子群优化小波神经网络(Particle Swarm Optimization Wavelet Neural Network, PSO-WNN)的高速公路行程时间预测模型。首先将高速公路原始收费数据规整化,截取其中有效字段,获取研究路段一个月的行程时间数据并对其进行数据处理。然后分别基于PSO-WNN模型和WNN模型,利用Matlab进行实验。实验结果显示,PSO-WNN模型预测结果的平均绝对误差、平均相对误差和均方误差较WNN模型分别降低了83.36%, 82.20%和98.15%。PSO-WNN行程时间预测模型不仅预测精度高,而且能较准确地预测出行程时间的走向及波动情况,在收敛速度方面也呈现出一定的优势,具有较好的适应能力。 相似文献
16.
基于改进PSO算法的两阶段损伤识别方法 总被引:1,自引:0,他引:1
为解决结构多损伤情况下的位置识别和损伤程度判定问题,提出了一种基于改进粒子群优化算法和贝叶斯理论的两阶段损伤识别方法,该方法采用频率和模态应变能作为损伤定位源数据,分别用基于频率改变和基于应变能耗散率的识别方法进行损伤信息的初步提取,再利用贝叶斯融合理论对损伤位置进行较为精确的判定.然后,利用粒子群优化(PSO)算法对损伤位置和程度进行更为精确的二次识别.考虑到简单PSO算法易陷入局部最优解,提出了3种改进措施,即粒子位置突变、最优记忆粒子微搜索和双收敛措施.数值仿真结果表明:采用贝叶斯融合理论可以有效地识别出可能的损伤单元,在此基础上用改进的PSO算法可以更精确地识别损伤的位置和程度,同时采用3种改进措施的PSO算法的识别精度明显优于其他PSO算法和遗传算法. 相似文献
17.
针对基本粒子群优化算法易陷入局部极值的缺陷,提出了一种细菌觅食机制粒子群优化算法.其基本思想是在粒子群优化算法中引入细菌觅食行为机制,提高PSO算法跳出局部极值的能力,借以改善PSO算法的寻优性能.采用标准测试函数的实验结果表明,该算法在收敛速度和求解精度方面均有显著改进. 相似文献
18.
基于混沌变异粒子群优化算法的图像稀疏分解 总被引:1,自引:0,他引:1
提出了基于改进的粒子群优化(PSO)算法的匹配追踪算法,用于快速图像稀疏分解.改进的PSO算法利用尺度收缩混沌变异的精细局部搜索性能,使稀疏分解的匹配追踪算法具有良好的全局寻优能力,提高了稀疏分解在冗余字典中原子匹配的速度和准确度.用二维墨西哥草帽函数作为冗余字典的生成函数,以增强对图像边缘和轮廓的表达能力.仿真结果表明,用提出的算法实现图像稀疏分解比用遗传算法和PSO更快更有效,重建图像的视觉效果好. 相似文献
19.
提出了一种动态多子群协作QPSO算法(Dynamic Multiple Sub-population Collaboration Quantum-behaved Particle Swarm Optimization,简称DMPQPSO),该方法动态构建各子群,并采用混沌策略分2个阶段优化QPSO,同时对各子群的收缩扩张系数分别进行自适应调整.采用该方法优化RBFNN,并将DMPQPSO算法与标准PSO和QPSO算法对比,仿真实验验证了该方法的优化效果. 相似文献
20.
为了改善磁浮系统的非线性和不稳定性特点,利用微分几何方法将两个不同结构的非线性子系统转化为两个相同结构的线性子系统,设计了基于标准粒子群算法的比例积分微分控制器.从固定惯性权重、线性递减惯性权重和线性微分递减惯性权重中,选出适合电磁铁1和电磁铁2的固定惯性权重,得到电磁铁1控制器的固定惯性权重参数C为0.5,电磁铁2控制器的固定惯性权重参数C为0.49,并且通过建立模糊综合评价模型得出优化后的电磁铁1和电磁铁2的控制器抗干扰的能力是好,且好的隶属度皆为0.561 9.实验结果表明,优化后的磁浮系统具有较好的鲁棒性. 相似文献