共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
为了实现高速公路的自由换道行为决策,并满足行车安全高效性、决策结果平稳无震荡、与运动规划模块结合引导车辆行驶等要求,提出了一种基于驾驶人不满度的换道行为决策方法。首先,根据驾驶人的速度期望建立了驾驶人不满度累积模型,并基于驾驶人速度不满累积度产生换道意图。其次,依据不同车道障碍车的运动状态,设计了2种目标车道选择策略,通过预测引擎对各个待选车道进行预测和评估,选取其中行车效率较高的车道作为目标车道,同时建立换道最小安全距离模型,用以在换道全过程中判断换道的可行性。然后,将换道行为决策的结果以目标车道的形式传递给基于改进人工势场的运动规划模块,用于运动规划模块目标的选取,以引导车辆横纵向运动。最后,在CarSim/PreScan/Simulink的联合仿真平台和硬件在环平台上建立多种测试场景,验证换道行为决策算法。试验结果表明:换道行为决策算法能够依据驾驶人速度不满累积度产生稳定的换道意图,进而根据所设计的换道策略选取具有更高行车效率的目标车道,并在换道过程中持续判断换道的可行性,以应对障碍车辆突然加减速等突发状况,保证换道过程的高效性和安全性;换道行为决策算法通过目标车道的转换,引导运动规划模块调整车辆的运动,实现跟车、换道等行为。 相似文献
4.
行驶环境中交互车辆的运动行为会对驾驶人心理产生刺激,引起驾驶人心理状态的变化,进而影响其换道决策行为。为此提出了1种基于驾驶人心理风险场模型的个性化换道决策方法。基于单向3车道快速路交通场景,通过交互式多模型分析车辆的横向速度与横向位移,引入可变横向速度相关的转移概率矩阵,预测交互车辆的目标车道选择;建立驾驶人心理风险场模型,量化行驶环境与交互车辆的运动行为对驾驶人心理风险造成的影响;利用高仿真驾驶模拟器联合SUMO试验平台开展287人次的模拟驾驶试验,通过建立混合交通仿真场景采集驾驶人的换道数据,并选取平均碰撞时间与驾驶人心理风险因子2个特征参数,使用K-means算法进行驾驶风格聚类,将驾驶人分为保守型、正常型和激进型这3类,并进一步确定不同风格的驾驶人在换道初始时刻所能接受的心理风险阈值。在此基础上,实现车辆的个性化安全换道决策。驾驶模拟器试验验证结果表明:对应于保守型、正常型和激进型的驾驶人,实际最小换道决策时间分别为3.48,6.29,11.33 s,实际最大换道决策时间分别为4.65,7.45,12.52 s,理论换道决策时间分别为4.09,6.83,11.95 s,所建立... 相似文献
5.
因交织区的强制换道存在紧迫性, 车辆换道行为在交织区后半段会出现因换道意愿强烈而产生的激进换道行为, 这种微观的换道行为将给交通流带来一定影响; 在人机混驾情形下, 不同类型换道切换控制模型同样可能影响交织区通行能力。在分析人机混驾交通流交织区换道行为特性的基础上, 将换道类型分为保守型换道和激进型换道; 在可接受安全间隙模型的基础上结合自动驾驶车辆间的协同行为, 构建自动驾驶车辆在保守状态下的协同换道模型; 以及在激进型状态下考虑目标车道后车类型影响下, 构建激进型换道模型。通过分析津保立交桥实地调研轨迹数据和NGSIM中US-101交织路段轨迹数据, 分别拟合了保守型、激进型换道模型切换点分布函数; 考虑不同车辆驾驶行为特性及其相互作用, 提出人机混驾条件下换道模型切换控制逻辑决策。以SUMO仿真软件搭建实验平台, 考虑人工驾驶车辆换道模型切换点分布特性, 以优化最大流率、交织区整体车辆运行速度、换道车辆速度等为目标, 确定不同自动驾驶车辆渗透率下自动驾驶车辆的最佳保守型-激进型换道模型切换点。仿真结果显示: 在交织区长度为250 m, 自动驾驶渗透率分别为0.2, 0.5, 0.8时, 自动驾驶换道模型切换点分别在180, 80, 50 m处达到最佳, 即随着自动驾驶渗透率的提高, 换道切换点最佳位置将向交织区入口处逐渐移动, 且在自动驾驶渗透率较低时这种换道切换点的变化较为明显; 在较高渗透率下, 由于协同换道出现频率增高, 自动驾驶强制性换道行为比例降低, 换道模型切换点对交织区通行能力的影响逐渐变小。本项研究对人机混驾条件下高速公路交织区自动驾驶车辆的换道控制提供决策依据 相似文献
6.
实现智能网联汽车换道的安全决策是改善交通安全、提高道路机动性的关键任务。本文探究了智能网联汽车换道的安全性问题,从驾驶安全的角度出发,分析了极端换道行为和紧急换道行为给交通安全带来的不利影响,强调风险评估的重要性,并梳理了利用环境传感器、交通冲突指标、车辆微观轨迹数据等换道风险评估方法。通过风险评估识别风险,并采取相应的措施,能够显著减少危险换道行为导致的交通事故。阐述了智能网联汽车在传统环境以及车联万物(vehicle to everything,V2X)场景下,通过获取环境信息完成换道决策的方法;重点剖析了智能网联汽车在V2X环境下,通过周围环境的感知和识别、目标检测、数据处理进行决策,并对未来智能网联汽车在V2X环境下实现安全决策提出合理建议。然后分析了现有换道决策模型方法,归纳为4类:即规则模型、离散选择模型、人工智能模型、博弈论模型;系统地总结了决策模型在国内外道路行车安全领域的研究和应用现状、存在的问题,以及应用展望。综上所述,尽管智能网联汽车的换道技术已取得重大研究成果,但未来仍存在很多挑战。针对现有研究中存在的问题:低等级自动驾驶环境情况下如何安全可靠地进行决策、智能网联汽车在低渗透率情况下如何做出更为高效和智能的驾驶决策、信息不完全情况下如何实现安全决策、在换道决策模型算法的可优化性方面如何改进,提出可行的解决方案。 相似文献
7.
提高人类驾驶人的接受度是自动驾驶汽车未来的重要方向,而深度强化学习是其发展的一项关键技术。为了解决人机混驾混合交通流下的换道决策问题,利用深度强化学习算法TD3(Twin Delayed Deep Deterministic Policy Gradient)实现自动驾驶汽车的自主换道行为。首先介绍基于马尔科夫决策过程的强化学习的理论框架,其次基于来自真实工况的NGSIM数据集中的驾驶数据,通过自动驾驶模拟器NGSIM-ENV搭建单向6车道、交通拥挤程度适中的仿真场景,非自动驾驶车辆按照数据集中驾驶人行车数据行驶。针对连续动作空间下的自动驾驶换道决策,采用改进的深度强化学习算法TD3构建换道模型控制自动驾驶汽车的换道驾驶行为。在所提出的TD3换道模型中,构建决策所需周围环境及自车信息的状态空间、包含受控汽车加速度和航向角的动作空间,同时综合考虑安全性、行车效率和舒适性等因素设计强化学习的奖励函数。最终在NGSIM-ENV仿真平台上,将基于TD3算法控制的自动驾驶汽车换道行为与人类驾驶人行车数据进行比较。研究结果表明:基于TD3算法控制的车辆其平均行驶速度比人类驾驶人的平均行车速度高4.8%,在安全性以及舒适性上也有一定的提升;试验结果验证了训练完成后TD3换道模型的有效性,其能够在复杂交通环境下自主实现安全、舒适、流畅的换道行为。 相似文献
8.
网联时代的到来必将改变驾驶人的注意力分配和环境感知能力,进而影响其认知与行为模式。此时,非网联环境中建立的换道意图模型是否继续适用于网联环境值得研究。因此,基于驾驶模拟器搭建了网联与非网联换道场景,对比分析了2种环境下驾驶人换道意图表征参数与换道意图识别模型。结果发现:网联环境下的换道意图时间窗口长度(6.6 s)比非网联环境(4.1 s)长了约60.98%。网联环境下,意图表征参数(车辆运动与驾驶人操作参数)波动幅度显著小于非网联环境。换道意图阶段,非网联环境下驾驶人的平均扫视速度、后视镜观看频次以及注视时间与网联环境下存在显著差异。模型对比发现,当提前0.5 s识别时,网联与非网联环境下的模型识别精度无明显差异,分别为98.25%和96.35%;当提前2 s识别时,网联环境下的模型识别精度(93.48%)显著高于非网联环境(85.68%);在提前3 s识别时,网联环境下的模型识别精度为92.23%,非网联环境下出现了训练不收敛的情况。综上可见,网联与非网联环境下驾驶人换道意图表征参数与模型识别精度存在较大的差异。此外,网联环境下驾驶人换道意图通过所提模型精确识别后利用网联通信方式发... 相似文献
9.
道路系统中的人机混驾交通环境是指人工驾驶车辆与自动驾驶车辆混合运行的交通环境,其中换道行为建模是人机混驾环境下无人驾驶车辆行为研究的热点。基于深度学习理论,构建人机混驾环境下基于长短期记忆神经网络的无人驾驶车辆换道行为模型(Long-short-term-memory-based Autonomous Vehicles Lane Changing,LSTM-LC)。通过研究人工驾驶车辆在换道过程中与周边车辆的相互作用,对换道行为影响因素进行分析;同时,为了提升模型的迁移性,引入道路横向偏移量信息。结合LSTM神经网络的输入要求,使用美国公开交通数据集Next Generation SIMulation(NGSIM)构建换道行为样本库。针对LSTM-LC模型,以均方差MSE作为损失函数,使用RMSprop优化方法进行训练,对LSTM网络结构、历史序列长度N及训练样本量3个重要参数进行标定。最后,针对道路横向偏移量M对LSTM-LC模型性能的影响进行对比试验。研究结果表明:相比GRU-LC模型,LSTM-LC模型对换道行为的表征更准确,在模型的精度和迁移性上有着显著的提升;GRU-LC模型的均方差为4.64 m2,迁移性均方差为119.82 m2,而LSTM-LC模型的均方差为3.18 m2,迁移性均方差为79.58 m2,分别优化了31.5%和39.71%;通过引入道路横向偏移量M,可将LSTM-LC模型精度和迁移性提升约10%,且模型稳定性更强。 相似文献
10.
科学、合理、拟人化的换道控制是实现自动驾驶车辆安全高效行驶的重要保障,已有研究主要考虑相邻车道速度差、换道间隙等要素对车辆换道控制的影响,并未考虑车辆频繁加减速导致乘车体验差而催生换道意图这一重要现象。针对该问题,设计以抗干扰能力为基础的自动驾驶车辆自适应换道调控方法,其调控过程主要包括:采用智能驾驶人模型控制自动驾驶车辆纵向驾驶行为,以减速频次为指标度量自动驾驶车辆的抗干扰能力,并将抗干扰能力引入到自动驾驶车辆换道决策过程中,模拟自动驾驶车辆因频繁加减速导致乘车体验差而产生换道意图的现象,在此基础上,提出车辆换道控制模型。然后,以智慧高速为背景,利用Netlogo构建多种自动驾驶车辆运行场景,测试所构建的自适应换道调控方法。研究结果表明:智能驾驶人模型的选用能够合理体现自动驾驶车辆换道行为对交通流的运行影响;相比于低密度车流(≤30 veh),在中高密度车流情况下(≥40 veh),自动驾驶车辆维持原有车道运行的能力较弱、换道频率较高,且过高[80次·(5 min)-1]或过低[10次·(5 min)-1]的抗干扰能力临界值会导致自动驾驶车辆运行速度降低至10 km·h-1,因此可以根据不同车流密度条件对自动驾驶车辆的最大抗干扰能力进行设置和调整,从而保证自动驾驶车辆的运行效率,这也从侧面证明了所提自适应换道调控方法的科学性与合理性。研究结果对于提高自动驾驶车辆换道控制的合理自主性具有重要意义,该结果进一步完善了自动驾驶车辆换道模型库,能够为自动驾驶自适应换道调控提供理论和技术支撑。 相似文献
11.
在行车环境中,驾驶人的精神负荷是否能合理分配直接影响行驶安全,因而驾驶人的驾驶熟练程度与驾驶人驾驶过程中的精神负荷分配之间关系值得研究,其中脑电是客观评价驾驶人精神负荷的重要指标.通过实验采集了10组城市道路环境下驾驶人驾驶过程中的脑电信号,并记录了车辆行驶过程中的车辆数据,然后使用样本熵的方法来定量计算脑电数据,从而评价驾驶人在换道过程中的精神负荷问题.样本熵计算结果显示:换道过程中驾驶人的脑电特征要明显比非换道过程中驾驶人的脑电特征复杂;换道过程中驾驶人的脑电特征样本熵明显大于非换道状态下的驾驶人脑电特征样本熵,熟练驾驶人的脑电数据样本熵明显小于非熟练驾驶人的样本熵值,熟练驾驶人在换道过程中车速高于非熟练驾驶人;相较于跟驰驾驶行为,换道驾驶行为过程占用更多的精神负荷,熟练驾驶人比非熟练驾驶人分配更少的精神负荷在换道过程中. 相似文献
12.
为完善拥堵交通流仿真中拥堵产生与消散的自发性,研究不同驾驶人群体的换道策略对拥堵产生与消散的影响,通过参考智能驾驶人模型(IDM)建立智能体,构建了基于多智能体系统的3车道交通环境,对交通流仿真方法进行改进,使其可以更加真实地表现出现实环境中拥堵的产生和消散.通过仿真实验,产生不断演化的交通流,得到一系列的仿真数据.利用仿真数据,采用重复博弈的理论分析驾驶员群体的策略对道路通行能力的影响.仿真及推理结果表明,在不发生事故的前提下,驾驶人群体采取占优的换道策略最多可以提高所有车辆7%的平均车速;理性的驾驶员换道策略的调整的最终结果会使道路通行能力降低. 相似文献
13.
14.
15.
16.
为探索城市信号交叉口进口道范围内机动车换道行为特性,利用无人机拍摄视频提取车辆换道轨迹数据,分析了进口道车辆换道行为的宏观和微观特性。研究结果表明:强制换道行为多发生在距离停车线60 m~90 m处,自由换道行为在90 m~120 m处;换道时间集中分布在4.5 s~5.5 s之间,其中强制换道的平均时间为4.58 s,自由换道时长为3.81 s;强制换道行为主要受目标车道的可插入间隙及前后车辆的速度差影响,但整体来看分布较为分散;自由换道行为追求行车效率,目标车道的交通运行状况往往要优于原车道,换道行为主要受到原车道前车的相对距离和速度影响。本研究成果可以为城市交叉口的理论研究提供方法参考,为进口道的管理与控制提供理论基础。 相似文献
17.
基于自动换道控制技术中融合个性化驾驶人风格的研究,建立考虑驾驶人风格的车辆换道轨迹规划及控制模型以提高换道规划控制模型对不同风格驾驶人的适用性,在保证安全性的基础上进一步满足驾驶人的个性化需求。首先通过问卷调查的方式采集得到了212份驾驶人风格量表数据,采用主成分分析法和K均值(K-means)聚类分析法将驾驶人按驾驶风格分为激进型、普通型和谨慎型,并通过驾驶模拟器试验采集不同风格驾驶人分别在自车道前车、目标车道前车和目标车道后车影响下的换道行为数据。然后对椭圆车辆模型进行改进,以描述不同风格驾驶人的行车安全区域,并据此构建3种典型工况下不同风格驾驶人的换道最小安全距离模型,结合驾驶舒适性约束、车辆几何位置约束以及不同风格驾驶人的换道行为数据,以换道纵向位移最短为目标,实现适应驾驶人风格的换道轨迹规划。最后以基于预瞄的路径跟踪模型作为前馈量,设计基于动力学的线性二次型最优(LQR)反馈控制器,通过调节控制权重矩阵实现3种工况下不同驾驶人风格的换道轨迹跟踪。PreScan和MATLAB/Simulink联合仿真结果表明:所设计的考虑驾驶人风格的换道轨迹规划及跟踪控制模型能够实现不同驾驶风格的自动换道轨迹规划及跟踪控制,可满足驾驶人个性化换道需求。 相似文献
18.
19.
换道行为在不同的换道意图下可分为自由换道和强制换道两类,选用 NGSIM 轨迹数据对二者微观特性进行对比分析.为保证数据准确性,在平滑处理基础上,以剔除轨迹数据换道过程识别错误为目的,构建了换道起终点时空约束规则,对完整的单次换道行为参数进行了提取.利用半对数模型,采用回归分析法对影响二者换道时间的显著性因素进行提取并对比;同时建立多项式模型,选取多个误差指标对不同阶数下换道横向移动轨迹拟合效果进行评价.结果表明,强制换道平均换道时间稍长于自由换道,影响二者换道时间的显著性因素及各因素影响程度并不相同;但二者横向移动轨迹均可用5次多项式拟合,拟合优度可达0.99. 相似文献