首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对某自主品牌混合动力轿车开发项目,利用有限元仿真分析和整车碰撞试验验证相结合的方法,研究了其高速后碰过程中燃油系统的完整性及高压电安全防护。通过合理的后舱结构设计以及软硬件双重高压防护的方案,使该轿车顺利通过高压电车辆国家后碰安全性法规。  相似文献   

2.
在电动汽车设计开发过程中,电动汽车高压电安全系统设计是保障整车安全的重点,文章对高压部件和电压电缆的防护提出具体实施方案,并对其做出详细规定和要求,在高压部件和高压电缆的防护方面,形成一套完整的电动汽车高压电安全技术解决方案。  相似文献   

3.
正新能源汽车高压电路由于连接器松脱、固定螺栓松动等原因可能造成高压电路断路或短路,从而导致发生触电、失去动力等危险情况的出现,因此必须对高压电路进行监测。高压互锁是用低压信号监视新能源汽车高压电路完整性的一种安全设计方法,并在高压电路断开之前给整车控制器(VCU)提供报警信息,提示车辆故障,预留驾驶员对整车系统采取措施的时间。本文以吉利EV450车为例,对该车高压互锁的基本原理、常见故障进行分析,并根据故障案例对高压互锁故障的排除方法进行介绍。  相似文献   

4.
在对插电式混合动力汽车的发动机、燃油箱和动力电池、电机、高压电路等关键零部件进行相关的碰撞安全性能开发时,不仅需要考虑传统燃油车的碰撞安全标准要求,同时还要考虑电动汽车动力电池安全相关的碰撞标准要求和电安全设计防护.文章首先分析了相应的碰撞试验法规,结合上汽某插电式混合动力汽车整车布置方案,针对其特殊结构重点研究其追尾...  相似文献   

5.
<正>1新能源汽车高压电防护技术课程特点新能源汽车高压电防护技术是新能源汽车技术专业的核心课程,该课程是依据1+X证书中智能新能源技术(中级)工作任务的新能源汽车相关工作岗位设置的。主要讲解新能源汽车电学与高压安全基础知识、新能源汽车常用仪器仪表的使用、  相似文献   

6.
以某款燃料电池轿车为对象,探讨了轿车碰撞时高压电安全的设计思路,阐述了其具体设计,并采用有限元法进行碰撞模拟对该车的高压电安全进行了验证.结果表明该车的高压电安全设计符合碰撞安全的要求.在此基础上对这类燃料电池轿车的碰撞高压电安全设计原则进行了总结.  相似文献   

7.
本文介绍纯电动汽车吉利帝豪EV450断续上下高压电的故障现象。阐述该款纯电动汽车高压上电控制逻辑,并分析无法上高压电的故障原因。通过故障诊断,分析造成故障现象可能原因,确认故障为充电与上电功能互锁所致。提出维修新能源汽车时,不能忽视功能安全设计。  相似文献   

8.
摘要:高压互锁是新能源汽车利用低压来监测高压回路完整性的控制方式,有效保证了高压使用的安全性.本文以帝豪EV450为例,对高压互锁回路断路和对地短路时的故障码和数据流进行解析. 关键词:新能源汽车、高压互锁、故障. 新能源电动汽车的高压电系统能给车辆的动力系统随时提供足够的电量输出.帝豪EV450动力电池的额定电压高达...  相似文献   

9.
电动汽车碰撞后电安全一直是研究的热点领域,2015年,我国发布了GB/T 31498—2015《电动汽车碰撞后安全要求》并纳入工信部公告管理。随着技术进步以及对于电安全研究的深入,需要对原有的碰撞后电安全提出修订。本文提出了电动汽车后部碰撞增加的必要性,同时系统的分析了防触电高压防护(电压、电能、电阻以及物理防护)四种方案改进后的要求、原理以及测试方法。重点阐述了关于电压测量中起始时间、电能要求的限值、绝缘电阻防护要求的缺陷以及物理防护测试的困难等研究。这对于指导电动汽车产品设计以及完善相关标准、法规具有参考价值,同时该研究成果已应用在国家标准GB/T 31498—2021中。  相似文献   

10.
由于FCV汽车销量逐渐增加,人们越来越熟悉FCV车的特性,对其高压电安全问题更加重视。高压系统架构的设计成为FCV汽车高压电安全的关键。高压系统架构设计的工作范围,主要包括高压系统原理、高压接触器状态检测、高压互锁设计、高压零部件的选型及在整车上的布置位置等方面。本文通过正向开发的思路,结合高压系统架构的设计原则,给出了一种FCV车高压架构设计方案;通过实际项目的应用,结果得出,此方案满足FCV车的高压安全要求,具有安全、可靠且易实现的优点,具有平台化的推广前景。  相似文献   

11.
正2高压电系统的控制2.1系统主继电器控制如图49所示,EV控制ECU控制系统主继电器(SMRB、SMRG及SMRP)以连接和断开动力蓄电池的高压电路。EV控制ECU还利用系统主继电器的工作正时监视继电器触点的工作情况。  相似文献   

12.
根据电动汽车高压电力驱动系统的结构,参考电动汽车安全法规要求,设计了电动汽车高压电力安全管理系统;分析研究5种典型的高压电力系统故障、危害和对应的处理措施,重点研究了动力电池高压电安全管理系统的功能与设计。基于CAN总线技术对电动汽车高压电力驱动系统状态和关键电气参数进行实时监测,结果证明所设计的电动汽车高压电安全管理系统具有良好的准确性和鲁棒性。  相似文献   

13.
正北汽EV160纯电动汽车的空调压缩机由高压电驱动,压缩机控制器安装在压缩机上,受整车控制单元VCU控制。压缩机是空调制冷系统制冷剂循环的动力。压缩机的故障有机械故障和电气系统故障,电气系统故障又分为高压电故障和低压电控制系统故障,压缩机的高压上电受到低压电控制。空调压缩机高压电不能上电,无法正常工作,往往是由于低压控制系统的故障引起的;因此,空调压缩机的电气故障诊断重点从低压电路控制系统着  相似文献   

14.
正二、高压部件与高压电气分配1.蓄电池充电控制模块(BCCM)蓄电池充电控制模块(BCCM)位于前舱内,如图14所示。BCCM的作用是控制电动车(EV)蓄电池充电。BCCM可以连接到高压(HV)交流(AC)外部电源,或HV直流(DC)外部电源。使用HVAC外部电源时,电源经过整流为HVDC,为电动车(EV)蓄电池充电,BCCM同时控制电动车(EV)蓄电池的充电速率。当车辆连接至HVDC外部电源时,可直接用外部HVDC为EV  相似文献   

15.
以某电动汽车为研究对象,建立了整车有限元仿真模型,并选取C-NACP全宽正碰工况进行碰撞仿真,通过有限元仿真方法分析了电动汽车在碰撞中高压电部件和高压电线可能存在的电安全性风险。结果表明,该电动汽车前舱内的PCU、驱动电机连接失效的风险较大,PCU外壳有被侵入的风险;多处高压电线存在挤压破坏风险,有可能导致漏电短路;DCDC接口弯折变形严重。  相似文献   

16.
<正>故障现象一辆2017款比亚迪秦EV车,累计行驶里程约为2万km,无法上高压电。故障诊断接车后试车,踩下制动踏板,按下启动按钮,仪表上的“OK”灯不点亮,主警示灯点亮,并且提示EV功能受限。用故障检测仪检测,发现电池管理系统中存储有故障代码“P1A600高压互锁1故障”“U02A100与漏电传感器通信故障”,由此决定先检查高压互锁1电路。  相似文献   

17.
本设计是对新能源汽车的高压部件、高压系统构造、高压配电箱的安全检测、高压回路、安全防护进行探究及解决。现代新能源汽车一般都分为纯电动汽车、混合动力汽车、燃料电池汽车。其中纯电动汽车是指汽车充电到储蓄电池,电池放电对整车提供电力从而驱动的电动式汽车,电动汽车的工作电压一般是几百伏,已经远远高出人体安全电压,而高压系统在运行时的放电电流可达到数十安或更高。所以当高压电路发生绝缘、短路及漏电等情况时,会直接对驾驶人员造成生命安全隐患。这也是现如今对新能源汽车的安全重要考核之一。  相似文献   

18.
龚帅  郭洪  刘航  亢寒晶  杨福宇  闫书明 《公路》2021,(4):321-326
为提升某跨铁路高速公路桥梁护栏的安全防护功能,运用调查分析、有限元计算与实车足尺碰撞试验综合技术手段,了解跨铁路高速公路桥梁护栏应具有高防护等级与减小车辆碰撞护栏时侧倾量的特殊防护需求,而原有护栏经过分析不满足该防护需求。针对这种情况提出了升级改造方案,并对方案的安全可靠性进行了验证。结果表明:护栏经1.5t小客车100km/h、18t大型客车80km/h、33t整体大货车60km/h以20°夹角碰撞检测,乘员碰撞后加速度最大为70.6m/s2,乘员碰撞速度最大为8.4m/s,大型客车与整体大货车碰撞护栏后最大动态外倾当量值分别为0.38m和0.41m,护栏达到了SS级高防护等级和车辆碰撞后低侧倾量的功能要求;护栏基座预埋螺栓经计算机仿真校核,其受力满足强度要求;结合现场设置条件及规范要求进行设计的护栏端部过渡结构,经计算机仿真分析验证,其具有安全可靠性。研究成果提高了跨铁路桥梁路段运营安全水平。  相似文献   

19.
正2020年4月22日,广汽丰田正式推出旗下纯电动车型——C-HR EV,本文主要介绍该车高压电系统的组成及工作原理。1高压电系统的组成如图1、图2所示,2020款广汽丰田C-HR EV车高压电系统主要由动力蓄电池总成、带转换器的逆变器总成、带电机的EV传动桥总成、电动空调压缩机总成、电动加热器分总成、充电接口及高压线束等部件组成。1.1动力蓄电池总成如图3所示,动力蓄电池总成主要包括动力蓄电池、1号动力蓄电池接线盒、2号动力蓄电池接线盒、  相似文献   

20.
针对某款增程式纯电动汽车的动力电池高压电安全管理系统进行了分析和研究,对高压继电器的工作状态监控方法、高压电上下电流程的充电唤醒和退出流程、绝缘检测方法和特殊情况下的动力电池安全防护系统设计进行了针对性研究。实车试验验证结果表明,所设计的动力电池安全防护系统能够有效的保障高压用电完全,具有良好的抗干扰性,满足设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号