首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
结合某实桥工程实例,开展了连续梁桥的桥墩纠偏的顶推受力分析研究.通过分析比较,在桥墩安全允许的条件下,可把竖向顶升千斤顶放置在桥墩顶部来顶升主梁,在主梁底部安装纵向和横向复位千斤顶来纠偏.结果表明:考虑了桥墩的纵桥向偏位与横桥向偏位的实际线形的计算分析结果更接近实际情况,为了减小墩顶主梁在顶升时产生的竖向力对桥墩根部产生的弯矩值和墩顶产生的位移值,可调整千斤顶的纵向布置以减小偏心距.  相似文献   

2.
马俊  盛洪飞  孙航 《公路交通科技》2006,23(8):84-88,92
考虑钢管混凝土中钢材与拉压区混凝土的非线性本构关系,引入几何非线性的影响,采用考虑截面特性的空间组合梁单元,建立钢管混凝土构件非线性有限元模型。首先对试验构件进行计算,与试验结果吻合较好,然后深入研究钢管混凝土拱肋竖向弯矩一曲率、纵桥向荷载一位移以及横桥向荷载一位移滞回关系,从中看出钢管混凝土拱肋具有良好的延性和吸能性质,并得出拱肋滞回性能的各种影响因素。  相似文献   

3.
大跨度连续刚构柔性拱组合桥施工控制   总被引:2,自引:0,他引:2  
宜万铁路宜昌长江大桥主桥为(130+2×275+130) m连续刚构柔性拱组合桥,主梁采用单箱双室截面,拱肋采用钢管混凝土桁架拱.该桥采用"先梁后拱"法施工,其施工控制的难点和重点为主梁两合龙段同时对顶合龙与两跨拱肋竖转合龙,施工控制的内容主要包括线形控制和应力监测.采用预测控制法对施工误差进行分析、识别、调整;通过3种有限元模型对比,适当修正主梁预抛高值.施工过程中的线形和应力监控结果表明,主梁和拱肋成桥线形误差均控制在允许范围内,结构应力满足设计要求,施工控制效果良好.  相似文献   

4.
针对软土区曲线箱梁桥结构上下部同时出现偏位的纠偏问题,以某曲线箱梁匝道桥为对象,提出在桥面与墩底同步顶推的纠偏技术。设计了将墩柱与箱梁临时固结后,通过桥面伸缩缝处千斤顶的顶推与牵引,结合墩底承台处千斤顶的顶推实现上下部同步纠偏的施工方案。为保证结构安全与准确复位,设计了综合考虑上下部结构位移与应力变化的施工监测方案。依据桥面伸缩缝位移、墩顶位移与墩底位移之间的变形协调关系,实现对纠偏施工过程的精准控制。现场实测结果表明,采用所设计的上下部同步纠偏方法及相应的施工监测控制方案,能够在确保结构安全的同时,高效实现曲线箱梁的纠偏目标,可为同类工程提供参考。  相似文献   

5.
为提高大跨度钢管混凝土拱桥施工控制的精度,建立了PDL(多项式分布滞后)模型,并将其应用于某钢管混凝土拱桥的拱肋施工控制中。通过提出基于PDL模型的拱肋线形控制方法,将环境温度和索力施工偏差作为影响因子,建立拱肋安装线形的PDL预测模型。再利用EViews软件计算预测线形控制点在各施工阶段的偏差。分析比较拱肋施工过程监测数据与预测数据,结果表明,预测值能准确地反映拱肋线形变化趋势,即运用此预测方法对大跨径钢管混凝土拱桥进行拱肋线形控制和偏差预测调整是可行的。  相似文献   

6.
在大跨径的钢管混凝土拱桥中,钢管拱肋的斜拉扣挂成拱过程面临计算困难、大悬臂结构频繁调整、成拱状态偏离等难题。在成拱的理论计算方面,引入了基于无应力参数精确控制的成拱控制方法,明确了大跨径钢管拱斜拉扣挂施工过程控制目标。基于该控制方法,构建了钢管拱桥的成拱计算理论方法。该计算理论首次给出了钢管拱肋合龙前后的力学状态联系方程,建立了成拱后拱肋线形误差与施工过程索力的数学关系,构建了同时考虑施工全过程约束条件与成拱后线形偏差的一次调索优化模型。该一次调索优化模型可在任意给定的成拱线形误差范围和施工过程中的塔偏、封铰、合龙等耦合约束条件下,求解最优的扣背索一次张拉索力。在成拱施工控制方面,首次提出采用三维扫描技术进行大型钢管拱肋的无应力参数精确控制与检测方法,给出了详细的封铰控制、拱肋节段无应力参数控制和合龙控制的具体实施方法。在跨径为507 m的合江长江公路大桥的建设全过程,采用了所提出成拱计算理论与控制方法。实践表明:所提出的成拱计算理论具有控制目标少、计算目标明确、索力分布与张拉最优的优点;所提出的控制方法确保了钢管拱肋制造与安装无应力尺寸的精度,极大地减少了施工过程中拱肋线形误差调整次数。大桥拱肋成拱后实测结果表明,拱肋线形与应力状态与一次落架状态吻合良好。  相似文献   

7.
采用旋转法横向顶推纠偏施工技术,通过以某点为旋转中心,在桥梁的一侧施加顶推力,使桥梁整体绕旋转中心旋转,从而达到纠偏的目的。该文以京港澳高速湾门前中桥为例,详细介绍了采用旋转法横向顶推施工的加固思路以及工艺流程,并针对施工过程中梁体的位移和应力进行监测,然后对纠偏的桥梁实施梁体受力分析与验算。结果表明:在施工过程中具有很好的安全可靠性,能为类似工程纠偏提供相应的理论与实践指导。  相似文献   

8.
《桥梁建设》2021,51(4)
广州明珠湾大桥主桥为(96+164+436+164+96+60) m中承式钢桁拱桥,采用双层桥面布置,主梁采用N形三主桁钢桁梁结构。主桥采用斜拉扣挂法、拱梁同步架设;中跨合龙时,拱肋与主梁分别采用"多点同步合龙"与"节点拼装合龙"法进行先拱后梁施工,以提高大桥的合龙效率。通过敏感性分析确定该桥采用26号、29号墩顶、落梁为主,竖向、横向、纵向顶拉为辅的合龙措施调整拱肋合龙口空间姿态。该桥中跨合龙施工中,在边跨采用抗倾覆压重设计,以控制大桥悬臂施工阶段由自重产生的倾覆力矩;在26号、29号墩顶支座处布置顶、落梁及纵移装置,以消除合龙口高差与转角位移,实现精准对位;在拱肋与主梁合龙口设置微调装置,以实现钢梁合龙口间距微调;在27号主墩设置顶推装置,使结构整体纵移0.085 m,实现上、下拱肋同步合龙;主梁合龙节点杆件拼装后,利用吊杆与顶拉装置调节高差与合龙口间距,实现大桥无应力精确合龙。  相似文献   

9.
为指导钢管混凝土拱桥拱肋混凝土灌注施工,以主跨575m的中承式钢管混凝土拱桥——广西平南三桥为背景,基于稳定性基本理论,建立主桁拱结构的有限元模型,对拱肋混凝土灌注过程中主拱肋的线形、应力和稳定性进行研究。结果表明:混凝土由拱脚灌注到拱顶过程中,主拱肋存在横向偏位和竖向偏位,灌注初期的偏位大于灌注后期,跨中截面的偏位大于其它截面;拱肋混凝土灌注过程中,钢管和核心混凝土的应力不断变化,最大应力主要集中在拱脚截面,且小于材料的允许值,钢管应力变化幅度大于混凝土应力变化幅度;结构稳定系数逐渐降低,灌注初期结构的稳定系数降低幅度大于灌注后期结构的稳定系数降低幅度。  相似文献   

10.
以杭州市九堡大桥梁拱组合体系拱桥整体顶推过程为背景,利用有限元软件MIDAS/Civil对其整体顶推施工进行仿真模拟,并对主纵梁、主副拱、导梁及临时撑杆关键截面测点应力跟踪测试和处理分析.分析结果表明:顶推过程中测点实际受力情况与模型仿真模拟结果较吻合;主纵梁与主拱实测最大应力值均未超出钢材允许应力,主体结构横桥向受力...  相似文献   

11.
上海大庆桥为跨径60m的异型系杆拱桥,主拱横桥向反对称布置2片C50钢筋混凝土拱肋。该桥采用"先梁后拱"方案施工,即先采用满堂支架现浇系梁并张拉预应力,再在支架上现浇拱肋。在该桥施工中,先张拉吊杆再进行拱肋脱架,以改善裸拱圈在自重作用下的不利受力问题;在横梁与系梁间设置后浇带,以缓解横梁在顺桥向的受剪状态;在主梁支架拆除后再将桥面板与系梁、横梁联结,以减少桥面板参与系梁受力;吊杆采用三轮张拉方案,吊杆在拱肋脱架前进行首轮张拉,在系梁、横梁联结后进行第2轮张拉,第2轮张拉后拆除主梁支架,在桥面系施工后进行第3轮张拉;拱肋变形较大部位的吊杆先张拉,反之后张拉。该桥成桥后的结构线形与内力均满足设计要求。  相似文献   

12.
通过计算制造线形为施工线形控制提供依据并指导施工;研究了零初始位移法和切线初始位移法的几何关系;提出了计算制造线形需要考虑水平位移;以总溪河大桥为工程背景,运用Midas/Civil软件建立空间有限元分析模型,得到了考虑混凝土收缩徐变、几何非线性、汽车荷载影响下主拱的累积位移,并在此基础上计算得到大跨度钢管混凝土拱桥的制造线形。计算结果表明:大跨度钢管混凝土拱桥制造线形的精确计算除了需要考虑竖向预拱度外还要考虑水平预拱度。  相似文献   

13.
以一座钢管混凝土刚架系杆拱桥设计为工程背景,通过在Ansys程序中建立有限元模型进行静力分析,并根据分析结果确定了刚架系杆拱在施工过程中各阶段的系杆设计张拉力,并对不同拱轴系数的拱肋内力进行对比分析,确定了拱肋的合理拱轴线,从而确定了拱肋的设计线形,在文章的最后根据应力叠加法原理对拱肋进行了应力验算.  相似文献   

14.
横撑及桥面系对钢管混凝土拱桥动力响应的影响分析   总被引:2,自引:0,他引:2  
横撑和桥面系作为钢管混凝土拱桥的重要组成部分对结构整体动力响应会产生很大的影响。以茅草街大桥为例,建立了中承式钢管混凝土拱桥不同横撑和桥面系布置形式的有限元模型,采用三向地震波同时输入的形式,得到6种工况在相同地震波作用下的不同动力响应,提取出拱肋的弯矩和位移包络图,并对面内弯矩、面外弯矩、竖向位移、横桥向位移进行了比较和分析。结果表明,桥面系对拱肋的响应影响很大;拱肋与桥面系结合处位移、内力均较大,在设计中应予以关注;在保证横向刚度的前提下,横撑需进行优化布置,以使得拱桥动力响应更加合理安全。  相似文献   

15.
为保证大跨度钢管混凝土劲性骨架拱桥拱肋竖转施工过程的抗风安全,以某主跨342 m钢管混凝土劲性骨架拱桥拱肋竖转施工为背景,研究该桥劲性骨架拱肋在竖转施工过程中的抗风性能及抗风措施。根据竖转施工特点,采用ANSYS软件分别建立2种最不利施工状态(拱肋竖转临界状态和拱肋合龙前状态)有限元模型计算风致响应,提出设置浪风索的抗风措施以提高抗风稳定性。结果表明:拱肋在2种最不利施工状态下会产生显著的拱顶横向位移和拱脚转轴连杆应力,危及拱肋施工安全;设置浪风索能有效降低处于竖转施工阶段的拱肋在横风作用下的拱顶横向位移和拱脚转轴连杆应力,且浪风索应力满足要求,可保证竖转施工安全。浪风索截面面积对拱脚转轴连杆应力影响较小,对拱顶横向位移影响较大,同时考虑到施工中浪风索张拉力的不均匀性,设计时宜适当增加浪风索截面尺寸,以提升结构整体抗风安全储备。  相似文献   

16.
为确保猛洞河大桥施工过程的安全、设计目标的实现、施工工序的简化,研究其拱圈施工的斜拉扣挂方案.基于考虑施工过程的平面杆系有限元法,以拱肋线形偏差(拱肋制作线形与拱肋合龙设计线形的偏差)等于0为目标,并令交于索塔同一高度处的扣、锚索水平分力相等,采用正装迭代法确定劲性骨架安装阶段的扣锚索张拉力;以拱圈应力满足规范要求为条件,用试算法确定主拱圈外包混凝土浇注过程的扣索索力初张值和调整值.在上述方案基础上,对骨架安装和外包混凝土浇注两个关键施工阶段分别进行关于拱肋线形和应力的参数敏感性分析,找出了灵敏度较大的结构参数,以便进行有针对性的控制.利用外包混凝土合龙状态的参数敏感性分析结果,对外包混凝土浇注过程中的扣索布置方案和完成后的拆除顺序进行了优化.  相似文献   

17.
中交怒江连心桥主桥采用下承式提篮拱桥,拱肋采用钢箱拱,主梁采用钢-混凝土组合梁,吊杆为网状结构。施工采用主结构整体顶推方法,受限于怒江流速急、水深大,顶推施工最大悬臂达100 m。通过对施工过程的总体及局部模拟计算,并在施工过程中对应力、位移进行监控,对顶推标高及千斤顶支反力随顶推过程进行动态调整,最终主桥顺利就位。  相似文献   

18.
沪苏通长江公铁大桥天生港专用航道桥为(140+336+140) m刚性梁柔性拱桥,主梁为三主桁双层板桁组合结构,采用“先梁后拱,主梁双悬臂拼装,拱肋竖向转体”方案进行施工。为确保成桥线形和内力满足设计要求,采用MIDAS Civil软件建立全桥有限元模型,进行施工全过程和成桥分析,基于无应力状态法开展施工控制。钢梁墩顶节间施工时,设置墩旁托架,利用浮吊拼装;对称悬拼期间,为保证纵向稳定性,采用水袋对边跨进行配重,利用扣塔分别张拉2对扣索以改善钢梁受力并调整钢梁线形;采用预降边支点、4号墩钢梁整体预偏,以及扣索索力调整等措施进行钢梁中跨合龙;拱肋竖转后,主要通过扣索完成拱肋合龙调位;拱肋合龙后,从中间向两边张拉吊杆。经实测,该桥钢梁合龙口相对高差在10 mm以内;拱肋合龙口轴向偏差最大2 mm,相对高差最大1 mm;吊杆索力与设计目标索力偏差均在5%内,满足施工控制要求。  相似文献   

19.
《公路》2021,(4)
大跨径梁拱组合体系桥梁顶推施工应采用合理的施工工艺保障主体结构安全和施工设施安全。采用有限元方法,分别对某大跨径梁拱组合体系桥梁的总体结构、PC箱梁局部、拱肋、支架体系及顶推体系在不利荷载工况下的受力状态进行分析。分析结果表明:PC箱梁局部存在1 MPa拉应力,应关注抗裂控制;拱肋存有一定的面外倾覆力矩,应对倾覆安全系数进行验算;各体系应开展合理设计与理论检验,以保障顶推安全。施工设计及计算方式可为类似桥梁顶推设计提供参考。  相似文献   

20.
六沾铁路宣天特大桥主桥为钢管混凝土拱加劲三跨连续梁桥,主跨为100 m。主梁为双纵梁的"П"形双向(局部三向)预应力混凝土结构,钢管混凝土加劲拱圈由2条相互平行的拱肋及横向联结系构成,拱肋为变高度钢管混凝土桁架,拱圈平联采用"ж"形空心钢管桁架,吊杆采用钢绞线体系。计算主梁应力、挠度、自振特性及钢管混凝土的钢管及混凝土应力;经试算,吊杆预张力、安全系数均满足要求。根据有限元分析结果,对拱-梁结合部进行设计改进:主梁上翼缘增加4束纵向短束;加强纵梁上翼缘普通钢筋布置;优化竖、横向预应力根数和布置。采取先梁后拱满堂膺架的施工方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号