首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为明确城市干路交叉口汽车右转的轨迹特性和轨迹曲率模式,使用无人机在重庆市4个城市道路交叉口上方进行高空拍摄。利用图像分析方法采集了右转车辆的轨迹数据,包括时间、行驶速度和轨迹坐标等,通过对相邻轨迹点外接圆半径的计算得到轨迹曲率。运用轨迹线-车道边缘线的间距值分析了右转车辆轨迹通过位置分布与交叉口几何布局之间的关系,明确了交叉口右转车辆轨迹的曲率特性。运用聚类方法识别了右转车辆的6种轨迹曲率形态,确定了不同轨迹曲率形态下的常见驾驶行为,并研究了车辆行驶速度与轨迹曲率的相关关系。研究结果表明:①交叉口几何布局(包括路缘半径、车道宽度和出口车道数)对右转轨迹通过位置分布存在影响;②带渠化设计的右转专用道可以限制轨迹分布范围,减少右转交通的冲突和延误;③在右转过程中公交车辆较小型汽车所需侧向空间更大,轨迹分布的离散程度更低;④轨迹曲率的关键点与圆曲线设计中的主要点变化趋势不一致;⑤车辆加速度与轨迹曲率变化率呈负相关关系,相关系数为-0.843 5;⑥行驶速度与等效半径存在正相关关系,车辆行驶速度越快,圆曲线内轨迹的等效半径越大。  相似文献   

2.
针对城市交叉口周边车辆长时轨迹预测问题,搭建路基和实车采集平台采集大量轨迹数据,采用高斯混合模型(Gaussian Mixture Model,GMM)识别目标运动模式,采用高斯过程回归(Gaussian Processes Regression,GPR)模型进行城市交叉口周边车辆轨迹长时预测,采用路基数据集对预测模型...  相似文献   

3.
城市交叉口的闯红灯违规分析研究   总被引:1,自引:0,他引:1  
王金梅 《中南公路工程》2006,31(4):123-126,130
闯红灯冲突比起交叉路口所有冲突占有比较高的伤害百比率。通过对西安部分城市交叉路口机动车辆违规行为的调查分析,对设置有全红灯间隔、没有设置全红灯间隔以及是否安装闯红灯自动检测系统的交叉口进行了比较研究,分析了闯红灯违规的特点,研究分析表明在信号灯相位及其间隔设置合理的前提下,实施安装自动闯红灯监测系统可以明显减少闯红灯行为的发生,闯红灯自动检测系统机动车驾驶员的行为规范得到改善。还给出了黄灯信号期通过交叉口车辆的微观仿真建模及其实验结果,初步探讨了减少闯红灯违规的有效措施。  相似文献   

4.
为探索城市信号交叉口进口道范围内机动车换道行为特性,利用无人机拍摄视频提取车辆换道轨迹数据,分析了进口道车辆换道行为的宏观和微观特性。研究结果表明:强制换道行为多发生在距离停车线60 m~90 m处,自由换道行为在90 m~120 m处;换道时间集中分布在4.5 s~5.5 s之间,其中强制换道的平均时间为4.58 s,自由换道时长为3.81 s;强制换道行为主要受目标车道的可插入间隙及前后车辆的速度差影响,但整体来看分布较为分散;自由换道行为追求行车效率,目标车道的交通运行状况往往要优于原车道,换道行为主要受到原车道前车的相对距离和速度影响。本研究成果可以为城市交叉口的理论研究提供方法参考,为进口道的管理与控制提供理论基础。  相似文献   

5.
闯红灯冲突比起交叉路口所有冲突占有比较高的伤害百比率.通过对西安部分城市交叉路口机动车辆违规行为的调查分析,对设置有全红灯间隔、没有设置全红灯间隔以及是否安装闯红灯自动检测系统的交叉口进行了比较研究,分析了闯红灯违规的特点,研究分析表明在信号灯相位及其间隔设置合理的前提下,实施安装自动闯红灯监测系统可以明显减少闯红灯行为的发生,闯红灯自动检测系统机动车驾驶员的行为规范得到改善.还给出了黄灯信号期通过交叉口车辆的微观仿真建模及其实验结果,初步探讨了减少闯红灯违规的有效措施.  相似文献   

6.
基于交叉口相位切换期间的车辆轨迹数据,分别根据单车和跟车行驶状态,识别和分析了相位切换期间可能发生的危险驾驶行为。通过视频拍摄和图像处理的方式,提取了曹安公路沿线3个交叉口共312条单车状态和四平路-大连路交叉口共449条跟车状态的高精度车辆轨迹数据。针对交叉口相位切换期间的危险驾驶行为特征,利用速度、加减速度、减速度变化率、潜在碰撞时间(TTC)等指标,研究在此期间车辆发生危险驾驶行为的特点和类型。对于单车状态下行驶的车辆,按停止、通过分类,依据减速度、减速度变化率、减速度变化率的峰值差等指标将停止车辆的危险驾驶行为分为紧急减速型、增强减速型和持续急减型,依据过停车线时间、速度、加速度等指标将通过车辆分为闯红灯型、超速过线型、激进加速型和持续高速型。对于在跟车状态下行驶的车辆,按前、后车不同的停止、通过决策组合分类,依据连续5个时间间隔(0.12 s)的TTC分析前、后车的危险驾驶行为及发生追尾事故的危险程度。针对识别出的危险驾驶行为类型,讨论车辆的关键行为参数与危险驾驶行为之间的内在关联。研究结果表明:单车状态下有17%的车辆存在危险驾驶行为,其中53%为紧急减速行为;跟车状态下有19%的跟车行为是危险的,其中停止车辆的比例是通过车辆的2倍以上。研究成果可进一步应用于驾驶行为模型的参数标定、基于车辆轨迹的交叉口安全评价以及预防危险驾驶行为的主动安全控制策略等。  相似文献   

7.
针对高速道路场景,对智能车辆前方的目标车辆进行轨迹预测。根据车辆运动轨迹数据具有时序性的特点,并为了增加轨迹特征的表征能力和上下文时空关联性,提出了将车道线特征、目标车辆的特征与历史轨迹数据的特征进行融合,和LSTM-CNN-LSTM融合模型,以提高目标车辆轨迹预测的精度。  相似文献   

8.
采用交通渠化后引起了城市道路部分路段(交叉口进口段)的交通流特性有别于普通路段,针对这种变化,采用1种以路段通行能力为等价标准来计算车辆折算系数的方法,并通过实例进行了验算。推荐交叉口进口段的大型车车辆折算系数为3.0。  相似文献   

9.
针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨迹生成算法,在遵守物理约束和隐蔽性前提下,生成更具对抗性的轨迹样本;此外,提出3个新的评价指标全面评估攻击效果;最后,探究了不同的防御策略来减轻对抗攻击影响。实验结果显示,基于扰动阈值的快速攻击算法(attack algorithm based on perturbation threshold for fast attack,PTFA)和基于动态学习率调整的攻击算法(attack algorithm based on dynamic learning rate adjustment, DLRA)在NGSIM数据集上的攻击时间和扰动效果均优于现有算法,更高效发现模型弱点。本研究通过模拟极端情况丰富了轨迹样本,深入评估了模型鲁棒性,为后续优化奠定了基础。  相似文献   

10.
为验证优化速度模型和广义力模型在模拟信号交叉口停车跟驰行为方面的适应性,在试验分析基础上提出考虑信号灯作用的跟驰模型,分别基于现有优化速度模型和广义力模型构建模拟系统对信号交叉口的停车跟驰行为进行仿真,分析其存在的问题及原因;采用实测数据标定广义力模型的参数,分析标定后模型的适应性;通过试验分析构建信号交叉口停车跟驰模型需考虑的因素并构建1个新的跟驰模型。结果表明:现有优化速度模型不适合描述信号交叉口的停车跟驰行为;重新标定的广义力模型仍存在倒车问题;新提出的跟驰模型能够避免倒车问题且能够很好地拟合实测数据。  相似文献   

11.
针对山区双车道公路危险性弯道路段交通事故多发的现实问题,提出主动评估短时交通流状态下的交通事故风险,以降低交通事故发生率.采用无人机高空拍摄弯道路段交通流运行状态,利用计算机识别技术提取高精度的车辆轨迹和交通流数据,结合山区双车道公路弯道路段危险驾驶行为特征表征交通冲突,以距离碰撞时间为交通冲突量化指标,提出山区车道公...  相似文献   

12.
排队长度是评价信号控制交叉口运行状态的重要参数之一。现有大多数基于抽样车辆轨迹数据的排队长度估计方法可以实现周期级排队长度估计,但是需要信号配时、渗透率或车辆到达分布等实践中难以获取的输入信息。此外,这类方法在低渗透率条件下往往难以确保估计结果的准确性和可靠性,极大地限制了其实用性。因此,提出一种抽样车辆轨迹数据驱动的时段级信号控制交叉口排队长度分布估计方法,可不依赖任何交通流理论模型和前述输入信息实现排队估计。首先,通过理论推导可以证明时段内抽样车辆的停车位置分布和排队长度分布之间可互相转化;然后,提出一种扩展的核密度估计方法来拟合并平滑抽样车辆停车位置分布,从而有效地适应不同日期和周期的轨迹叠加所带来的波动,提高方法的适用性;最后,基于前述推导和拟合的停车位置分布实现时段排队长度分布、平均排队长度和百分位排队长度估计。分别采用仿真和实证数据对上述方法进行验证和评价。结果表明,通过叠加5 d相同时段的抽样轨迹数据,15 min的平均排队长度估计误差仅为1.59 veh,相对误差仅为9%。同时,面向不同分析时长,只要给定超过100 veh抽样车辆的观测样本,无论渗透率高低,所提出的方法在定时或自适应信号控制交叉口都可实现时段排队长度分布的准确估计,其成果可进一步用于信号控制交叉口运行可靠性评估以及多时段定时信号控制的鲁棒优化。  相似文献   

13.
城市交通环境中车辆的驾驶行为随机性较高,且驾驶人驾驶风格迥异。为了解决复杂交通环境下车辆行驶轨迹难以精确预测的问题,在社会生成对抗网络(Social GAN)的基础上,考虑车辆的行驶速度、加速度、航向角等行驶状态参数和形状尺寸,建立车辆间交互影响力场模型,提出一种基于时-空注意力机制的车辆轨迹预测算法(SIA-GAN)。根据受到场景中其他车辆交互影响力的大小赋予其他车辆不同的空间注意力权重因子,重点关注对自车行驶影响较大的车辆信息,并结合时间注意力机制挖掘自身车辆对观测时段内历史轨迹特征向量的时间依赖性,得到车辆预测轨迹。为验证所提算法的有效性,在开源数据集上对算法进行迭代训练,并与LSTM、Social LSTM、Social GAN三种轨迹预测算法进行对比分析。研究结果表明:SIA-GAN不仅在训练时的收敛速度上有较大提升,且与现有其他轨迹预测算法相比在平均位移误差、最终位移误差、平均速度误差、平均航向角误差等评价指标均有大幅下降,预测3.2 s时各项指标平均降低了51.25%、60.1%、37.84%、13.75%;预测4.8 s时各项指标平均降低了52.78%、61.47%、3...  相似文献   

14.
针对现有的车速引导模型存在未综合考虑车辆跟驰行为、引导场景划分较粗略等问题,研究了4种基于车路协同环境下实时优化各车的车速引导模型。对车辆进行所属车辆列队划分,考虑车速引导影响对FVD跟驰模型进行改进。以车辆列队为引导单元,将车辆可能面临的交通状况细分为8种引导场景,以引导车辆不停车或少停车通过交叉口为目标,直接优化车辆加/减速度,建立车辆列队后车根据改进的跟驰模型计算目标跟驰加/减速度,并与头车组成列队以同一目标车速通过交叉口停车线的4种车速引导模型。以南昌市海棠北路/枫林西大街交叉口为例进行仿真验证,结果表明,所提出的车速引导模型能使车辆行程时间减少18.9%,最大排队长度减少58.8%,延误减少60.8%,燃油消耗减少36.4%,且适用于不同交通饱和状态,对提高信号交叉口通行效率和减少车辆燃油消耗有显著效果。  相似文献   

15.
行人作为重要的交通参与者,其行走意图和轨迹预测对智能驾驶汽车的决策规划具有重要意义。基于注意力机制增强的长短时记忆(Long Short-term Memory, LSTM)网络,设计一种多特征融合的行人意图以及行人轨迹预测方法。该方法通过融合行人骨架和头部方向特征,以加强行人运动特征的表达,并将融合特征作为意图预测网络输入,继而得到行人意图;由于行人运动具有不确定性,将行人意图预测类别和历史轨迹坐标的联合向量作为行人轨迹预测网络的输入,以期生成更为精确的轨迹预测结果。此外,在轨迹预测网络中引入注意力机制,以加强LSTM对各个时刻编码向量的有效利用,从而提高网络的行人轨迹预测性能,并基于Daimler数据集进行训练及验证。研究结果表明:所提出的多特征意图预测方法准确率可达96.0%,优于基于骨架单特征的意图预测网络;在预测时域为1 s的情况下,预测轨迹的位置均方根误差为347 mm,相较于恒速度(Constant Velocity, CV)模型、交互多模型(Interacting Multiple Model, IMM)、常规LSTM等基线方法均有明显的提升;在实际场景分析中,提出的方...  相似文献   

16.
近年,基于网联车辆轨迹数据的交通管控与服务研究方兴未艾。其中,信号控制交叉口排队长度估计备受关注。然而,在低渗透率条件下,单个周期内轨迹稀少且提供的交通信息十分有限。现有研究仅以当前周期内网联车辆轨迹数据为输入,难以获得准确且可靠的周期级排队长度估计结果。因此,融合利用历史网联车辆轨迹数据提供的车辆到达和停车位置信息以及当前周期内实时观测的网联车辆排队信息,提出一种基于最大后验概率的周期最大排队长度估计方法。首先,依据历史轨迹数据的停车位置信息,估计排队长度的先验分布;其次,依据历史轨迹数据的车辆到达信息,估计周期内车辆的历史到达分布,并结合周期内最后1辆排队网联车辆的到达时刻与停车位置,构建排队长度似然函数;最后,基于贝叶斯理论,结合前述先验分布与似然函数,推导周期排队长度的后验分布,并采用最大后验概率方法实现周期最大排队长度的估计。仿真结果表明:所提方法在不同饱和度和渗透率条件下,均优于现有的方法;即使在车辆轨迹数不超过1 veh·周期-1的低渗透率条件下,所提方法的平均绝对估计误差也不超过2 veh·周期-1。实证结果表明:在渗透率仅为8.96%的条件下,所提方法的平均绝对误差为2.12 veh·周期-1,平均相对估计误差为12.4%,同样优于现有同类方法。  相似文献   

17.
在复杂动态的城市道路环境中,不同的交通参与者之间会不可避免地产生时间或空间上的冲突.针对该问题,对智能驾驶车辆在城市交叉口左转时潜在的冲突行为进行分析并建立决策模型.考虑了车辆运动模式并基于高斯过程回归模型(GPR)建立了直行车辆长时轨迹预测模型,结合轨迹预测提出了基于冲突消解的智能驾驶车辆决策流程(模型)和考虑多因素...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号