首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conceptual design framework for collision and grounding analysis is proposed to evaluate the crashworthiness of double-hull structures. This work attempts to simplify the input parameters needed for the analysis, which can be considered as a step towards a design-oriented procedure against collision and grounding. Four typical collision and grounding scenarios are considered: (1) side structure struck by a bulbous bow, (2) side structure struck by a straight bow, (3) bottom raking, (4) bottom stranding. The analyses of these scenarios are based on statistical data of striking ship dimensions, velocities, collision angles and locations, as well as seabed shapes and sizes, grounding depth and location. The evaluation of the damage extent considers the 50- and 90-percentile values from the statistics of collision and grounding accidents. The external dynamics and internal mechanics are combined to analyse systematically the ship structural damage and energy absorption under accidental loadings.  相似文献   

2.
船舶碰撞缓冲型球鼻艏概念探讨--球鼻曲率对碰撞的影响   总被引:1,自引:0,他引:1  
船舶碰撞事故中,被撞油船船侧的破裂会引起严重的海洋污染,故油船双层船壳设计成为防止被撞油船破损的有效措施。但随着海上运输船舶的数目及尺度的日益增大,双层船壳已不能满足防止船侧破损的要求。本文提出了缓冲型球算般的构思。在船舶相撞的过程中,球鼻艏曲率的尖锐程度影响被撞船船侧的损伤程度,故提出并讨论了表征球鼻艏碰撞特性的标志性参数。通过对不同曲率的球鼻艏一系列的碴撞数值仿真计算,详细描述了外形曲率对球鼻艏的变形形态、碰撞力、碰撞力密度及能量吸收的影响,指出船舶采用钝形的球鼻艏能有效减小碰撞时的穿透损伤。  相似文献   

3.
The primary aim of the present study is to investigate the collision resistance and residual strength of single side skin (SSS) and double side skin (DSS) bulk carriers subject to collision damage. The impact dynamics analyses were conducted using ANSYS LS-DYNA for the evaluation resistance forces, energy absorption and penetration depth for various collision scenarios. The struck vessels of Capsize SSS and DSS designs were assumed to be entirely standstill and the striking vessels of an Aframax-type oil tanker with different bulbous bow shapes were modeled as rigid bodies. The findings were compared, where possible, with existing analytical tools. Residual strength calculations on SSS and DSS vessels were computed corresponding to all considered collision damage scenarios. Traditional Smith's method was applied with the average stress — average strain relationships of elements based on derived semi - analytically. The effect of corrosion was also evaluated by Joint Bulker Project (JBP) Rules on the influence of plate and stiffener thickness. The safety of the vessels was determined as a ratio of the ultimate hull girder strength to bending moment in damaged condition. Finally, results and insights derived from the present work are summarized.  相似文献   

4.
《Marine Structures》2002,15(4-5):365-381
The adoption of double hull system in the side hull of oil tanker has been recognized as an effective countermeasure to prevent a disastrous damage induced by collision accident which might cause cargo oil spill from a struck oil tanker. However, when considering that ocean-going vessels are increasing not only in size but also in speed, a threat of disastrous collision accident should be further mitigated even on the responsibility of striking ships.A series of crush tests using scale models of the buffer bow has been carried out. The test results were compared with those obtained by FEA simulation and a simple analysis. The performance of the buffer bow is discussed focusing on the collapse mechanism and the Pδ characteristics. Then the guidelines for the practical design of buffer bow structure are presented.  相似文献   

5.
SEA-Arrow (sharp entrance angle bow like an arrow) has no protrusion of the bulbous bow to reduce bow waves and has a transverse stiffening system in the narrow bow space to apply the buffer bow concept. This system has lower longitudinal stiffness than a conventional longitudinal stiffening system and therefore has buffer characteristic in ship-to-ship collision. A comparative collision study of SEA-Arrow and the conventional bulbous bow was conducted using elasto-plastic finite element analysis. A collision scenario where the striking ship hits the side shell of tanker midship perpendicularly was selected. The results showed that the buffer bow characteristic of SEA-Arrow is superior to that of the conventional bulbous bow, since much more energy is dissipated by the plastic deformation of striking and struck ships until the inner shell of struck ship ruptures.  相似文献   

6.
层间水对水下双层结构撞击历程的影响分析   总被引:1,自引:1,他引:0  
梅志远  朱锡  吕岩松 《船舶力学》2007,11(2):259-264
双层壳体结构是潜艇等大型水下结构的重要结构形式,潜艇结构的水下碰撞是潜艇的主要事故形式,然而,针对双层壳体的潜艇结构水下碰撞问题的研究工作目前却极为有限.文中首先提出潜艇碰撞问题,并对其碰撞特征进行分析,然后针对潜艇水下碰撞环境下,层间水对碰撞历程的影响和双层结构的碰撞特点进行了理论分析,在数值仿真计算的基础上,着重讨论了双层板结构在碰撞过程中,层间水对撞击速度、碰撞力以及双层板吸能特性的影响,分析结果显示,层间水对双层壳板撞击历程的影响主要体现在两方面:一是接触初始阶段,耐压壳板将由于层间水的存在,与非耐压壳板组成抗冲击弹簧体系参与抗冲击作用,吸收冲击能量,这对于双层壳板的防撞性能是有利的;二是非耐压壳板穿透后,层间水的影响主要体现为水对耐压壳板的粘附作用,耐压壳板的抗撞能力显著下降.  相似文献   

7.
为分析碰撞中潜艇结构的损伤特性,选取2500t级双壳体潜艇作为研究对象,对潜艇结构进行等比例实体建模,并采取潜艇船艏与舷侧部位的撞击形式.利用大型非线性有限元软件Ls-Dyna,从能量、碰撞力和冲击环境3个角度研究碰撞的影响,得出以下结论:潜艇外壳及中间结构是吸能的主要结构,刚度较弱的潜艇艏部会产生大的塑性变形区,而刚度较强的舷侧结构的响应则以动能为主,且伴随着小范围的塑性变形区;撞击力在艏部临界速度附近,产生单峰值及双峰值现象,并确定临界速度值约为15~16kn;船长方向的冲击环境成对数函数分布,按中级损伤程度,对艇员的影响区域为距离船艏撞击区约0.11倍艇长范围.  相似文献   

8.
单壳船舷侧结构的碰撞分析   总被引:1,自引:1,他引:0  
给出一种计算船体结构基本构件——梁、板耐撞性的简化分析方法,并将该方法应用于单壳船舷侧结构的碰撞分析。讨论了球鼻首撞击作用下单壳船舷侧结构的总体破坏模式及其渐进破坏过程,提出了计及渐进破坏过程的碰撞损伤简化计算方法。实例计算结果表明:该简化分析方法能对单壳船舷侧结构的耐撞性作出合理的预报,可应用于船舶设计阶段船体结构耐撞性能的评估。  相似文献   

9.
基于CFD的船舶球首型线自动优化   总被引:4,自引:0,他引:4  
在满足排水量及航速要求情况下设计出性能优良的船体型线,降低船体阻力、节能降耗是造船界一直所追求的目标。船舶球首的大小、位置和形状对船体兴波影响非常大,因此文章通过船型参数化融合方法,生成一系列球首型线,并以兴波阻力最小为目标,采用遗传算法实现球首型线的自动优化。将上述方法应用于某集装箱船球首型线的自动优化,并进行船舶静水阻力实验,实验表明优化船型在设计航速附近总阻力降低明显,说明文中采用的基于CFD船型自动优化方法是可行的。  相似文献   

10.
In this paper, we investigate the damage to offshore platforms subjected to ship collisions. The considered scenarios are bow and stern impacts against the column of a floating platform and against the jacket legs and braces. The effect of the ship–platform interaction on the distribution of damage is studied by modeling both structures using nonlinear shell finite elements. A supply vessel of 7500-ton displacement with bulbous bow is modeled. A comprehensive numerical analysis program is conducted, and the primary findings are described herein. The collision forces from the vessel are compared with the suggested force–deformation curves in the NORSOK code. For collisions with floating platforms we particularly focus on the crushing behavior and potential penetration of the bulbous bow and stern sections into the cargo tanks or void spaces of semi-submersible platforms. For fixed jacket platforms we investigate whether jacket braces can penetrate into the ship without being subjected to significant plastic bending or local denting.Adequate treatment of the relative strength between the interacting bodies is especially relevant for impacts with high levels of available kinetic energy, for which shared energy or strength design is aimed at. Simplifying one body as rigid quickly leads to overly conservative and/or costly solutions, and is in some cases non-conservative.The numerical analysis is used to develop a novel pressure–area relation for the deformation of the bulbous bow and stern corners of the supply vessel. Procedures for strength design of the stiffened panels are discussed. Refined methods and criteria are proposed for strength design of platforms, including both floating and jacket structures. The adequacy of the NORSOK design guidance for collisions against jacket legs is evaluated. The characteristic strength of a cylindrical column is used to develop a novel criterion for the resistance to local denting from stern corners and bulbous bows.  相似文献   

11.
陆明锋  杨源 《船舶工程》2019,41(3):31-36
超大型集装箱船的船艏显著外飘、船艉宽平外悬,使其在恶劣海况下航行时容易发生严重的砰击。为确保船体艏艉部结构在砰击中不发生损坏,需要研究作用到艏艉外板上的砰击压力,并以此为设计载荷来校核外板和相连结构的强度。目前对集装箱船砰击局部强度的校核要求仍以经验公式为主,但是为提高对超大尺度船舶强度校核的可靠性,近年来推出了砰击的直接分析方法。本文初步分析了砰击直接分析方法的基本原理,并运用该方法对20,000 TEU集装箱船的艏、艉部砰击压力以及最小板厚要求进行了研讨,其结果可为超大型集装箱船的结构设计提供重要的参考。  相似文献   

12.
油轮艏部结构碰撞特性研究   总被引:1,自引:0,他引:1  
在船舶碰撞中,船艏是主要作用方.船艏结构的碰撞特性是影响船-船碰撞过程中被撞船舷侧结构损伤程度的决定因素.为减少碰撞事故损失,应从碰撞的观点对船艏结构的特性进行研究,提出一种研究船艏的碰撞特性的方法及表征船艏碰撞特性的特征量,据以改进船艏设计.根据船艏结构本身的碰撞破损过程,对船艏结构碰撞力与破损深度的关系、艏部构件在碰撞过程中的损伤形态和能量耗散进行了研究,指出碰撞力曲线是船艏结构的一种固有特性.提出了碰撞力面积密度曲线的概念,它可以用于定量表达船艏结构对其它结构的破坏能力.利用有限元数值模拟方法计算了一艘4万吨船艏的碰撞损坏实例,显示了上述碰撞特征并讨论了提高碰撞数值模拟计算精度的方法.  相似文献   

13.
内河双壳油船舷侧结构耐撞性分析   总被引:1,自引:1,他引:0  
提出了内河双壳油船舷侧结构耐撞性能的简化分析方法,详细讨论了球鼻艏撞击作用下内河双壳油船舷侧结构的总体破坏模式及其渐进破坏过程.在考虑舷侧外壳板发生断裂破坏后的剩余抗撞能力的基础上,给出了双壳舷侧结构的撞击力―撞深曲线和吸收能量-撞深曲线,并与有限元仿真分析结果进行了比较.简化分析方法得到的结果与有限元分析基本上是一致的,这表明该方法能对内河双壳油船结构的耐撞性能做出合理预报,可用于这类油船耐撞性能的评估.  相似文献   

14.
依据缓冲球艏设计要求,提出棱柱型艏柱设计方案,运用有限元分析软件LS-DYNA对采用传统艏柱与棱柱型艏柱结构的12 000 t油船进行船艏碰撞的仿真分析,发现棱柱型艏柱结构比传统艏柱结构球艏更易被压溃.  相似文献   

15.
在撞击过程中船艏结构的典型损伤是外壳板和内加筋的褶皱,撕裂和弯曲。在以前的船舶结构的碰撞分析的简化方法或数值模拟中往往略去横向肋骨框架对船艏碰撞性能的影响。本文利用有限元数值仿真方法研究了横向肋骨框架在碰撞损坏过程中的作用,发现其对船艏结构的损伤形态、碰撞力及能量耗散有重要影响。因而是碰撞计算中不可忽略的因素。  相似文献   

16.
在分析球艏形状特征参数、特征曲线和曲面生成的基础上,介绍以Feature、Curve engine和Metasurface为特征机制的球艏参数化方法和实现过程。生成的曲面模型光顺、精度高,可满足工程的需要。  相似文献   

17.
郑礼建  许晟  左文锵  侯国祥 《船海工程》2011,40(6):77-78,82
对LPC快艇加装声呐球鼻艏船进行模型阻力试验,设计了适合此快艇加装声呐球鼻艏的5种方案.试验得到5种方案的19种状态的船模试验基本参数,在换算成实船后得到实船总阻力曲线图、实船有效功率曲线图和实船剩余阻力曲线图.船模阻力试验结果表明,加装此5种球鼻后,船模总阻力增加都较小,且在设计航速上仍有较好的耐波性和稳定性,综合船...  相似文献   

18.
船舶碰撞事故往往会引起被撞船的船体结构严重损坏,并且威胁船上人员的生命安全.在船一船碰撞中被撞船的损伤程度取决于两个方面:一是舷侧结构的碰撞性能;二是撞击船艏结构的相对刚度.船舶的艏部结构刚度一般远远高于舷侧结构的刚度,在船舶碰撞研究时,通常将撞头理想化为刚体,不考虑其损伤变形和能量吸收,这样做实际上过于保守.本文针对舰船,主要研究舰艏结构的碰撞损伤特性,将撞击舰艏作为可变形结构进行数值仿真研究,得到了一些艏部变形的规律.  相似文献   

19.
提出一种以势流兴波阻力理论Rankine源方法为基础,结合SHIPFLOW软件为计算工具,利用CAD-CFD集成平台FRIENDSHIP-Framework软件进行变形优化,研究船舶的最小兴波阻力型线优化设计的方法,并考察了兴波优化得到的船型总阻力变化情况。在型线优化过程中,以兴波阻力系数为目标函数,排水量变化范围为约束条件,在Wigley船体前端增加一个利用Feature建模技术参数化生成的球艏并调整艏部型线使得船体表面光顺。选取球鼻艏形状的各项参数作为基本设计变量,利用DOE方法对船艏进行优化,获得了设计航速下兴波阻力较小的船型,验证了所提方法进行船艏型线优化的有效性。相应的考察变形及优化前后总阻力变化情况表明:在高傅汝德数情况下增加球艏所带来的粘性阻力的增加小于兴波阻力的减小量,总阻力得到了改善,优化后得到的球艏能在进一步减小兴波的同时减小总阻力。此外,还运用所提方法对3100TEU船型的船艏,利用Delta Shift方法进行变形,在设计航速下,将变形的参数作为设计变量,利用DOE方法进行优化设计。结果显示:在排水量限制范围内当球鼻艏向上向前伸展一定长度时可以降低兴波阻力。与此同时,由于优化前后船体湿表面积变化很小,粘性阻力的变化并不明显,兴波的减小则使得总阻力得到了改善。  相似文献   

20.
运用非线性显式有限元的方法,分析船-码头碰撞的全过程,探讨碰撞部位对船舶动力特性的影响规律,揭示船-码头碰撞过程中船体构件的受损情况,预报碰撞力及变性能的时程变化规律。研究表明:船舶与码头发生首碰、尾碰时,船舶主要受力构件、受力特点明显不同,主要受力构件的应力分布特点是分布面积小,维持时间长,应力数值大;次要受力构件的应力分布特点是分布面积大,维持时间较短,应力数值小性。船舶与码头碰撞过程中伴有船舶的凹陷及船体外板的运动,在实际工程中应当给予足够的重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号