首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Accurate road-traffic emission inventories are of great interest to metropolitan planning agencies especially in the appraisal of regional transport policies. Integrated road transport emission models are an effective means of establishing emission estimates, yet their development requires significant investments in data and resources. It is therefore important to investigate which data inputs are the most critical to inventory accuracy. To address this issue, an integrated transport and emissions model is developed using the Montreal metropolitan region as a case-study. Daily regional hydrocarbon (HC) emissions from private individual travel are estimated, including the excess emissions due to engine starts. The sensitivity of emission estimates is then evaluated by testing various levels of input aggregation common in practice and in previous research. The evaluated inputs include the effect of start emissions, ambient weather conditions, traffic speed, path choice, and vehicle registry information. Inherent randomness within the integrated model through vehicle selection and path allocation is also evaluated. The inclusion of start emissions is observed to have the largest impact on emission inventories, contributing approximately 67 % of total on-road HC emissions. Ambient weather conditions (season) and vehicle registry data (types, model years) are also found to be significant. Model randomness had a minimal effect in comparison with the impact of other variables.  相似文献   

2.
Ambient concentrations of pollutants are correlated with emissions, but the contribution to ambient air quality of on-road mobile sources is not necessarily equal to their contribution to regional emissions. This is true for several reasons such as the distribution of other pollution sources and regional topology, as well as meteorology. In this paper, using a dataset from a travel demand model for the Sacramento metropolitan area for 2005, regional vehicle emissions are disaggregated into hourly, gridded emission inventories, and transportation-related concentrations are estimated using an atmospheric dispersion model. Contributions of on-road motor vehicles to urban air pollution are then identified at a regional scale. The contributions to ambient concentrations are slightly higher than emission fractions that transportation accounts for in the region, reflecting that relative to other major pollution sources, mobile sources tend to have a close proximity to air quality monitors in urban areas. The contribution results indicate that the impact of mobile sources on PM10 is not negligible, and mobile sources have a significant influence on both NOx and VOC pollution that subsequently results in secondary particulate matter and ozone formation.  相似文献   

3.
Ito  Douglas T.  Niemeier  Debbie  Garry  Gordon 《Transportation》2001,28(4):409-425
Transportation conformity is a US regulatory process that requires that transportation modeling be integrated with air quality modeling. Consequently, every change to either modeling process is undertaken with great scrutiny by the regional governments, who have to use the models for demonstrating conformity. This paper explores the "trip versus link debate," which stems from the fact that the standard travel demand models used by most metropolitan planning organizations are primarily link oriented, while the air quality models have been primarily trip oriented. Using the Sacramento region we examine the effects on mobile source emissions inventories when speed-VMT distributions are constructed using the trip and link-based philosophies. The results of our study indicate that trip-based VMT-speed distributions produce consistently lower emissions estimates than the link-based distributions. We use the results to assert that deciding between a trip-based or link-based conformity modeling process involves more than the technical difficulty of changesto the models or the potential political ramifications, it involves assessing which method will provide the most accurate estimates of regional motor vehicle emissions. We also examine ways to think about constructing mobile source emission inventories.  相似文献   

4.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

5.
Highway emissions represent a major source of many pollutants. Use of local data to model these emissions can have a large impact on the magnitude and distribution of emissions predicted and can significantly improve the accuracy of local scale air quality modeling assessments. This paper provides a comparison of top–down and bottom–up approaches for developing emission inventories for modeling in one urban area, Philadelphia, in calendar year 1999. A bottom–up approach relies on combining motor vehicle emission factors and vehicle activity data from a travel demand model estimated at the road link level to generate hourly emissions data. This approach can result in better estimates of levels and spatial distribution of on-road motor vehicle emissions than a top–down approach that relies on more aggregated information and default modeling inputs.  相似文献   

6.
This paper establishes a link between an activity-based model for the Greater Toronto Area (GTA), dynamic traffic assignment, emission modelling, and air quality simulation. This provides agent-based output that allows vehicle emissions to be tracked back to individuals and households who are producing them. In addition, roadway emissions are dispersed and the resulting ambient air concentrations are linked with individual time-activity patterns in order to assess population exposure to air pollution. This framework is applied to evaluate the effects of a range of policy interventions and 2031 scenarios on the generation of vehicle emissions and greenhouse gases in the GTA. Results show that the predicted increase of approximately 2.6 million people and 1.3 million jobs in the region by 2031 compared to 2001 levels poses a major challenge in achieving meaningful reductions in GHGs and air pollution.  相似文献   

7.
A leading cause of air pollution in many urban regions is mobile source emissions that are largely attributable to household vehicle travel. While household travel patterns have been previously related with land use in the literature (Crane, R., 1996. Journal of the American Planning Association 62 (1, Winter); Cervero, R. and Kockelman, C., 1997. Transportation Research Part D 2 (3), 199–219), little work has been conducted that effectively extends this relationship to vehicle emissions. This paper describes a methodology for quantifying relationships between land use, travel choices, and vehicle emissions within the Seattle, Washington region. Our analysis incorporates land use measures of density and mix which affect the proximity of trip origins to destinations; a measure of connectivity which impacts the directness and completeness of pedestrian and motorized linkages; vehicle trip generation by operating mode; vehicle miles/h of travel and speed; and estimated household vehicle emissions of nitrogen oxides, volatile organic compounds, and carbon monoxide. The data used for this project consists of the Puget Sound Transportation Panel Travel Survey, the 1990 US Census, employment density data from the Washington State Employment Security Office, and information on Seattle’s vehicle fleet mix and climatological attributes provided by the Washington State Department of Ecology. Analyses are based on a cross-sectional research design in which comparisons are made of variations in household travel demand and emissions across alternative urban form typologies. Base emission rates from MOBILE5a and separate engine start rates are used to calculate total vehicle emissions in grams accounting for fleet characteristics and other inputs reflecting adopted transportation control measures. Emissions per trip are based on the network distance of each trip, average travel speed, and a multi-stage engine operating mode (cold start, hot start, and stabilized) function.  相似文献   

8.
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21%, 33%, 24% and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than non-commercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity.  相似文献   

9.
Dispersion models are useful tools for setting emission control priorities and developing strategies for reducing air toxics emissions. Previous methodologies for modeling hazardous air pollutant emissions for onroad mobile sources are based on using spatial surrogates to allocate county level emissions to grid cells. A disadvantage of this process is that it spreads onroad emissions throughout a grid cell instead of along actual road locations. High local concentrations may be underestimated near major roadways, which are often clustered in urban centers. Here, we describe a methodology which utilizes a Geographic Information System to allocate benzene emissions to major road segments in an urban area and model the segments as elongated area sources. The Industrial Source Complex Short Term dispersion model is run using both gridded and link-based emissions to evaluate the effect of improved spatial allocation of emissions on ambient modeled benzene concentrations. Allocating onroad mobile emissions to road segments improves the agreement between modeled concentrations when compared with monitor observations, and also results in higher estimated concentrations in the urban center.  相似文献   

10.
Many urban areas are perusing infill, transit oriented, and other “smart-growth” strategies to address a range of important regional goals. Denser and more mixed use urban development may increase sustainability and improve public health by reducing vehicle travel and increasing the share of trips made by transit, walking and bicycling. Fewer vehicle trips results in fewer greenhouse gas and toxic vehicle emissions, and more trips made by walking and bicycle increases physical activity. Prior research has largely focused on modeling and estimating the potential size of these and other smart-growth strategy benefits. A largely overlooked area is the potential for unexpected public health costs and environmental justice concerns that may result from increasing density. We evaluate regional land-use and transportation planning scenarios developed for the year 2040 by a metropolitan planning organization with a newly developed regional air quality modeling framework. Our results find that a set of regional plans designed by the MPO to promote smart-growth that are estimated to result in less vehicle use and fewer vehicle emissions than a more typical set of plans results in higher population exposure to toxic vehicle emissions. The smart-growth plans also result in greater income-exposure inequality, raising environmental justice concerns. We conclude that a more spatially detailed regional scale air quality analysis can inform the creation of smarter smart-growth plans.  相似文献   

11.
The CALINE4 model is widely used to predict the effect of vehicle emissions on ambient concentrations close to roadways. It requires an evaluation of the rate at which different air pollutants are emitted by vehicles, taking into account things such as vehicle flow, velocity, type and age. For Europe the databases of the COmputer Program to calculate Emissions from Road Transport (COPERT) are combined with local vehicle details to obtain site-specific emission factors for dispersion modelling. The ability of CALINE4 to predict the spatial variation of hydrocarbon concentrations downwind of a motorway is assessed, as is the accuracy of COPERT III composite emission factors for several hydrocarbon compounds. The concentrations of seven traffic-associated compounds is found at three locations downwind and upwind of a motorway. Modelled and measured background-corrected downwind concentrations are compared on three bases: daily peak hour concentrations, mean concentrations, and a set of model evaluation parameters.  相似文献   

12.
Vehicular emission models play a key role in the development of reliable air quality modeling systems. To minimize uncertainties associated with these models, it is essential to match the high-resolution requirements of emission models with up-to-date information. However, these models are usually based on average trip speed, not on environmental parameters like ambient temperature, and vehicle’s motion characteristics, such as speed, acceleration, load and power. This contributes to the degradation of its predictive performance. In this paper, we propose to use the non-parametric Classification and Regression Trees (CART), the Boosting Multivariate Adaptive Regression Splines (BMARS) algorithm and a combination of them in hybrid models to improve the accuracy of vehicular emission prediction using on-board measurements and the chassis dynamometer testing. The experimental comparison between the proposed CART-BMARS hybrid model with the BMARS and artificial neural networks (ANNs) algorithms demonstrates its effectiveness and efficiency in estimating vehicular emissions.  相似文献   

13.
While the phenomenon of excess vehicle emissions from cold-start conditions is well known, the magnitude and duration of this phenomenon is often unclear due to the complex chemical processes involved and uncertainty in the literature on this subject. This paper synthesizes key findings regarding the influence of ambient and engine temperatures on light-duty vehicle (LDV) emissions. Existing literature, as well as analytical tools like the U.S. Environmental Protection Agency’s Motor Vehicle Emission Simulator (MOVES), indicate that while total vehicle emissions have dropped significantly in recent years, those associated with cold starts can still constitute up to 80% for some pollutant species. Starting emissions are consistently found to make up a high proportion of total transportation-related methane (CH4), nitrous oxide (N2O), and volatile organic compounds (VOCs). After 3–4 min of vehicle operation, both the engine coolant and the catalytic converter have generally warmed, and emissions are significantly lower. This effect lasts roughly 45 min after the engine is shut off, though the cooling rate depends greatly on the emission species and ambient temperature. Electrically (pre-)heated catalysts, using the bigger batteries available on hybrid drivetrains and plug-in vehicles, may be the most cost-effective technology to bring down a sizable share of mobile source emissions. Trip chaining (to keep engines warm) and shifting to non-motorized modes for shorter trips, where the cold start can dominate emissions, are also valuable tactics.  相似文献   

14.
Exposure to fine particulate matter from vehicle exhaust is associated with increased health risk. This study develops a new approach for creating spatially detailed regional maps of fine particulate matter concentration from vehicle exhaust using a dispersion model to better evaluate these risks. The spatial extent, diurnal, and seasonal patterns of concentration fields across Los Angeles County, California are evaluated and population exposure and exposure equity by race and income are investigated. The results demonstrate how this modeling approach can create new knowledge about vehicle emissions exposure. This approach also provides a method for proactively screening out regional plans, or specific projects within these plans, that are likely to cause air quality concerns. A proactive and regional air quality assessment can identify potential problems earlier in the planning process and a wider range of solutions, saving time, money and protecting public health. The detailed concentration maps can also be used to improve the siting of regulatory air quality monitors and provide more accurate exposure data for epidemiology studies.  相似文献   

15.
In this study, we develop a Passenger Car Emission Unit (PCEU) framework for estimating traffic emissions. The idea is analogous to the use of Passenger Car Unit (PCU) for modeling the congestion effect of different vehicle types. In this approach, we integrate emission modeling and cost evaluation. Different emissions, typically speed-dependent, are integrated as an overall cost via their corresponding external costs. We then develop a normalization procedure to obtain a general trend that is applicable for all vehicle types, which is used to derive a standard cost curve. Different vehicle types with different emission standards are then mapped to this standard cost curve through their corresponding PCEUs that are to be calibrated. Once the standard cost curve and PCEUs have been calibrated, to estimate the overall cost of emission for a particular vehicle, we only need to multiply the corresponding PCEU of that vehicle type to the standard cost curve. We apply this PCEU approach to Hong Kong and obtain promising results. Compared with the results obtained by the full-blown emission model COPERT, the approach achieves high accuracy but obviates tedious inputs typically required for emission estimation.  相似文献   

16.
随着我国社会经济发展水平的不断提高,汽车使用量持续攀高。大力发展新能源汽车,能够促进资源充分利用,减少汽车尾气排放,对保障能源安全、促进节能减排、防治大气污染、推动我国能源可持续发展具有重要意义。随着电动汽车的推广使用,电动汽车对充电站的基础设施建设以及服务网络的完善等需求日益紧迫。充电基础设施的建设,用以满足电动汽车的发展需求,并以充电设施、充电系统的适度超前发展引导电动汽车的业务发展。  相似文献   

17.
Based on the national emission inventory data from different countries, heavy-duty trucks are the highest on-road PM2.5 emitters and their representation is estimated disproportionately using current modeling methods. This study expands current understanding of the impact of heavy-duty truck movement on the overall PM2.5 pollution in urban areas through an integrated data-driven modeling methodology that could more closely represent the truck transportation activities. A detailed integrated modeling methodology is presented in the paper to estimate urban truck related PM2.5 pollution by using a robust spatial regression-based truck activity model, the mobile source emission and Gaussian dispersion models. In this research, finely resolved spatial–temporal emissions were calculated using bottom-up approach, where hourly truck activity and detailed truck-class specific emissions rates are used as inputs. To validate the proposed methodology, the Cincinnati urban area was selected as a case study site and the proposed truck model was used with U.S. EPA’s MOVES and AERMOD models. The heavy-duty truck released PM2.5 pollution is estimated using observed concentrations at the urban air quality monitoring stations. The monthly air quality trend estimated using our methodology matches very well with the observed trend at two different continuous monitoring stations with Spearman’s rank correlation coefficient of 0.885. Based on emission model results, it is found that 71 percent of the urban mobile-source PM2.5 emissions are caused by trucks and also 21 percent of the urban overall ambient PM2.5 concentrations can be attributed to trucks in Cincinnati urban area.  相似文献   

18.
To better assess health impacts from diesel transportation sources, particle number emissions can be modeled on a road network using traffic operating parameters. In this work, real-time particle number emissions rates from two diesel transit buses were aggregated to the roadway link-level and modeled using engine parameters and then vehicle parameters. Modern statistical methods were used to identify appropriate predictor variables in the presence of multicollinearity, and controlled for correlated emission measurements made on the same day and testing route. Factor analysis helped to reduce the number of potential engine parameters to engine load, engine speed, and exhaust temperature. These parameters were incorporated in a linear mixed model that was shown to explain the variation attributable to link-characteristics. Vehicle specific power and speed were identified as two surrogate vehicle travel variables that can be used in the absence of engine parameters, although with a loss in predictive power compared to the engine parameter model. If vehicle speed is the only operating input available, including road grades in the model can significantly improve particle number emission estimates even for links with mild grade. Although the data used are specific to the buses tested, the approach can be applied to modeling emissions from other vehicle models with different engine types, exhaust systems, and engine retrofit technologies.  相似文献   

19.
Increasingly strict emissions standards are providing a major impetus to vehicle manufactures for developing advanced powertrain and after-treatment systems that can significantly reduce real driving emissions. The knowledge of the gaseous emissions from diesel engines under steady-state operation and under transient operation provides substantial information to analyze real driving emissions of diesel vehicles. While there are noteworthy advances in the assessment of road vehicle emissions from real driving and laboratory measurements, detailed information on real driving gaseous emissions are required in order to predict effectively the real-time gaseous emissions from a diesel vehicle under realistic driving conditions. In this work, experiments were performed to characterize the behavior of NOx, unburned HC, CO, and CO2 emitted from light-duty diesel vehicles that comply with Euro 6 emissions standards. The driving route fully reflected various real-world driving conditions such as urban, rural, and highway. The real-time emission measurements were conducted with a Portable Emissions Measurement System (PEMS) including a Global Positioning System (GPS). To investigate the gaseous emission characteristics, authors determined the road load coefficients of vehicle specific power (VSP) and regression coefficient between fuel use rate and VSP. Furthermore, this work revealed the correlation between the rates of average fuel use and each gaseous emission.  相似文献   

20.
Vehicle soak time, the duration of time a vehicle’s engine is at rest prior to being started, and its distribution function are important transportation activity data inputs for mobile emissions inventory estimation due to their impacts on vehicle start and evaporative emissions. This paper provides vehicle emission researchers with an overview of statistical analysis methods relevant to analyzing vehicle soak time data. Many of these methods are already in use in emissions research and have appeared in the literature. These methods are reviewed and further details regarding the implementation and interpretation of these methods are provided. Statistical methods relevant to the analysis of soak time data that have yet to appear in the emissions literature, including kernel density estimation and generalized linear models, are also introduced. Advantages and disadvantages of the methods are compared and theoretical justification is provided. Issues of correlated observations and censored data are discussed. General guidelines for the analysis of soak time data, such as stratification by start type and geographical region, are established. Finally, a subset of the statistical methods discussed is used to analyze the US Environmental Protection Agency’s 3-city data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号