首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a vehicle routing approach for the transport of end-of-life consumer electronic goods for recycling in South Korea. The objective is to minimize the distance of transportation of end-of-life goods collected by local authorities and major manufacturers’ distribution centers to four regional recycling centers located. A vehicle routing problem is constructed for each regional center, and a Tabu search is applied to solve it. Computational results using field data show that the method outperforms existing approaches to reverse logistics.  相似文献   

2.
A multiple user class equilibrium assignment algorithm is formulated to determine vehicle trips and the vehicle miles of travel (VMT) in various operating modes on highway links. A heuristic solution algorithm based on the Frank–Wolfe decomposition of the equilibrium assignment problem is presented. The treatment of intrazonal trips, which are very important for emission studies is also discussed. The solution algorithm is implemented in a traffic assignment program for emission studies, referred to as TAPES. The use of the algorithm is demonstrated through a TAPES model case study on a Charlotte, NC network database for 1990 AM peak period. The operating mode mix of VMT in cold transient, hot transient and hot stabilized modes, also known as the mix of cold-starts, hot-starts and stabilized mode trips, is derived on a link by link basis. The results are aggregated by facility type and the location of link segments. It is observed that the operating mode fractions in transient and stabilized modes could vary widely across different facility types geographic locations. The aggregated operating mode fractions derived from the assignment analysis indicates that a lesser proportion of VMT operates in cold and hot transient modes when compared to the operating mode mix derived from the Federal Test Procedure (FTP).  相似文献   

3.
The aim of this study is to establish a method to calculate good quality user equilibrium assignments under time varying conditions. For this purpose, it introduces a dynamic network loading method that can maintain correct flow propagation as well as flow conservation, and it shows a novel route-based solution algorithm. This novel algorithm turns out to be convenient and logically plausible compared to the conventional [Frank, M., Wolfe, P., 1956. An algorithm for quadratic programming. Naval Research Logistics Quarterly 3, 95–110] algorithm, because the former does not require evaluation of an objective function and it finds solutions maintaining correct flow propagation in the time-varying network conditions. The application of novel dynamic network loading method and solution algorithm to test networks shows that we can find high quality dynamic user equilibrium assignment. This is illustrated in an example network using the deterministic queuing model for a link performance function and associating costs and flows in a predictive way in discrete time.  相似文献   

4.
Present traffic assignment methods require that all possible origins and destinations of trips taking place within a study area be represented as if they were taking place to and from a small set of points or centroids. Each centroid is supposed to represent the location of all trip-ends within a given zone, and this necessarily misrepresents points located at the edges of the zone.In order to alleviate this problem (which we refer to as the spatial aggregation problem) one could use smaller zones and more centroids, but existing traffic assignment algorithms cannot efficiently handle many centroids.This paper introduces an algorithm procedure which is designed to handle a substantially larger number of centroids. In the paper that follows, the technique is further developed to take into account a continuous distribution of population.  相似文献   

5.
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

6.
The formulation of the static user equilibrium traffic assignment problem (UETAP) under some simplifying assumptions has a unique solution in terms of link flows but not in terms of path flows. Large variations are possible in the path flows obtained using different UETAP solution algorithms. Many transportation planning and management applications entail the need for path flows. This raises the issue of generating a meaningful path flow solution in practice. Past studies have sought to determine a single path flow solution using the maximum entropy concept. This study proposes an alternate approach to determine a single path flow solution that represents the entropy weighted average of the UETAP path flow solution space. It has the minimum expected Euclidean distance from all other path flow solution vectors of the UETAP. The mathematical model of the proposed entropy weighted average method is derived and its solution stability is proved. The model is easy to interpret and generalizes the proportionality condition of Bar-Gera and Boyce (1999). Results of numerical experiments using networks of different sizes suggest that the path flow solutions for the UETAP using the proposed method are about identical to those obtained using the maximum entropy approach. The entropy weighted average method requires low computational effort and is easier to implement, and can therefore serve as a potential alternative to the maximum entropy approach in practice.  相似文献   

7.
Allocating movable resources dynamically enables evacuation management agencies to improve evacuation system performance in both the spatial and temporal dimensions. This study proposes a mixed integer linear program (MILP) model to address the dynamic resource allocation problem for transportation evacuation planning on large-scale networks. The proposed model is built on the earliest arrival flow formulation that significantly reduces problem size. A set of binary variables, specifically, the beginning and the ending time of resource allocation at a location, enable a strong formulation with tight constraints. A solution algorithm is developed to solve for an optimal solution on large-scale network applications by adopting Benders decomposition. In this algorithm, the MILP model is decomposed into two sub-problems. The first sub-problem, called the restricted master problem, identifies a feasible dynamic resource allocation plan. The second sub-problem, called the auxiliary problem, models dynamic traffic assignment in the evacuation network given a resource allocation plan. A numerical study is performed on the Dallas–Fort Worth network. The results show that the Benders decomposition algorithm can solve an optimal solution efficiently on a large-scale network.  相似文献   

8.
Abstract

A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost.  相似文献   

9.
10.
This paper investigates a traffic volume control scheme for a dynamic traffic network model which aims to ensure that traffic volumes on specified links do not exceed preferred levels. The problem is formulated as a dynamic user equilibrium problem with side constraints (DUE-SC) in which the side constraints represent the restrictions on the traffic volumes. Travelers choose their departure times and routes to minimize their generalized travel costs, which include early/late arrival penalties. An infinite-dimensional variational inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we establish an existence result for the DUE-SC by showing that the VI admits at least one solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an equivalent optimal control problem. The Lagrange multipliers associated with the side constraints as derived from the optimality condition of the DUE-SC provide the traffic volume control scheme. The control scheme can be interpreted as additional travel delays (either tolls or access delays) imposed upon drivers for using the controlled links. This additional delay term derived from the Lagrange multiplier is compared with its counterpart in a static user equilibrium assignment model. If the side constraint is chosen as the storage capacity of a link, the additional delay can be viewed as the effort needed to prevent the link from spillback. Under this circumstance, it is found that the flow is incompressible when the link traffic volume is equal to its storage capacity. An algorithm based on Euler’s discretization scheme and nonlinear programming is proposed to solve the DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed traffic volume control scheme.  相似文献   

11.
The delivery service provided by large-scale retailers continues to grow as online sales occupy an increasingly large share of the market. This study aims to tease out efficient vehicle scheduling times as well as optimal delivery routes by applying meta-heuristic algorithms. Monthly data on existing routes were obtained from a branch of Korea’s leading large-scale online retailer. The first task was to examine the status of existing routes by comparing delivery routes created using Dijkstra’s algorithm with existing delivery routes and their vehicle scheduling. The second task was to identify optimal delivery routes through a comparative analysis of the genetic algorithm and Tabu search algorithm, known for its superior applicability amongst other meta-heuristic algorithms. These findings demonstrate that the optimal vehicle routing problem not only has the potential to reduce distribution costs for operators and expedite delivery for consumers, but also the added social benefit of reduced carbon emissions.  相似文献   

12.
Using a sample-based representation scheme to capture spatial and temporal travel time correlations, this article constructs an integer programming model for finding the a priori least expected time paths. We explicitly consider the non-anticipativity constraint associated with the a priori path in a time-dependent and stochastic network, and propose a number of reformulations to establish linear inequalities that can be easily dualized by a Lagrangian relaxation solution approach. The relaxed model is further decomposed into two sub-problems, which can be solved directly by using a modified label-correcting algorithm and a simple single-value linear programming method. Several solution algorithms, including a sub-gradient method, a branch and bound method, and heuristics with additional constraints on Lagrangian multipliers, are proposed to improve solution quality and find approximate optimal solutions. The numerical experiments investigate the quality and computational efficiency of the proposed solution approach.  相似文献   

13.
We consider a network with interactions and capacity constraints at each junction. We give conditions on the interactions and constraints which, if satisfied at each separate junction, ensure that any feasible assignment problem has an equilibrium solution. Two illustrative examples are provided; the first arises naturally and does not satisfy our conditions, while the second does satisfy our conditions but is somewhat unnatural.  相似文献   

14.
In this paper, we propose a link-node complementarity model for the basic deterministic dynamic user equilibrium (DUE) problem with single-user-class and fixed demands. The model complements link-path formulations that have been widely studied for dynamic user equilibria. Under various dynamic network constraints, especially the exact flow propagation constraints, we show that the continuous-time dynamic user equilibrium problem can be formulated as an infinite dimensional mixed complementarity model. The continuous-time model can be further discretized as a finite dimensional non-linear complementarity problem (NCP). The proposed discrete-time model captures the exact flow propagation constraints that were usually approximated in previous studies. By associating link inflow at the beginning of a time interval to travel times at the end of the interval, the resulting discrete-time model is predictive rather than reactive. The solution existence and compactness condition for the proposed model is established under mild assumptions. The model is solved by an iterative algorithm with a relaxed NCP solved at each iteration. Numerical examples are provided to illustrate the proposed model and solution approach. We particularly show why predictive DUE is preferable to reactive DUE from an algorithmic perspective.  相似文献   

15.
The fundamental diagram, as the graphical representation of the relationships among traffic flow, speed, and density, has been the foundation of traffic flow theory and transportation engineering. Seventy-five years after the seminal Greenshields model, a variety of models have been proposed to mathematically represent the speed-density relationship which underlies the fundamental diagram. Observed in these models was a clear path toward two competing goals: mathematical elegance and empirical accuracy. As the latest development of such a pursuit, this paper presents a family of speed-density models with varying numbers of parameters. All of these models perform satisfactorily and have physically meaningful parameters. In addition, speed variation with traffic density is accounted for; this enables statistical approaches to traffic flow analysis. The results of this paper not only improve our understanding of traffic flow but also provide a sound basis for transportation engineering studies.  相似文献   

16.
The sensitivity of travel costs to changes in input flows in the Wardrop equilibrium problem is studied. Examples are given showing that both origin to destination and global travel costs may decrease as a result of an increase in input flows. Other examples show that, in the two-mode equilibrium assignment problem transit origin to destination travel costs may decrease as a result of an increase in automobile input flows.  相似文献   

17.
Much interest has recently been shown in the combination of the distribution and assignment models. In this paper we adopt a generalized Benders' decomposition to solve this combined problem for a system optimized assignment with linear link costs and explicit capacity constraints on link flows. The master problem which is generated is used to show that the combined problem can be viewed as a modified distribution problem, of gravity form, with a minimax instead of a linear objective function. An algorithm for solving the master problem is discussed, and some computational results presented.  相似文献   

18.
This paper proposes simple and direct formulation and algorithms for the probit-based stochastic user equilibrium traffic assignment problem. It is only necessary to account for random variables independent of link flows by performing a simple transformation of the perceived link travel time with a normal distribution. At every iteration of a Monte-Carlo simulation procedure, the values of the random variables are sampled based on their probability distributions, and then a regular deterministic user equilibrium assignment is carried out to produce link flows. The link flows produced at each iteration of the Monte-Carlo simulation are averaged to yield the final flow pattern. Two test networks demonstrate that the proposed algorithms and the traditional algorithm (the Method of Successive Averages) produce similar results and that the proposed algorithms can be extended to the computation of the case in which the random error term depends on measured travel time.  相似文献   

19.
This paper proposes an advanced solution for efficient logistics management in urban areas based on a unified scheme able to address both static and dynamic decision making at a company and network level. The proposed solution generates the most efficient urban distribution plan utilizing an evolutionary metaheuristic approach and a backpressure framework that provide competitive scheduling and routing decisions. An empirical study based on real data is conducted assessing the performance of the proposed advanced solution and the reported results of the evaluation experiments demonstrate its generality and robustness.  相似文献   

20.
This paper presents a solution approach for the problem of optimising the frequency and intensity of pavement resurfacing, under steady-state conditions. If the pavement deterioration and improvement models are deterministic and follow the Markov property, it is possible to develop a simple but exact solution method. This method removes the need to solve the problem as an optimal control problem, which had been the focus of previous research in this area. The key to our approach is the realisation that, at optimality, the system enters the steady state at the time of the first resurfacing. The optimal resurfacing strategy is to define a minimum serviceability level (or maximum roughness level), and whenever the pavement deteriorates to that level, to resurface with a fixed intensity. The optimal strategy does not depend on the initial condition of the pavement, as long as the initial condition is better than the condition that triggers resurfacing. This observation allows us to use a simple solution method. We apply this solution procedure to a case study, using data obtained from the literature. The results indicate that the discounted lifetime cost is not very sensitive to cycle time. What matters most is the best achievable roughness level. The minimum serviceability level strategy is robust in that when there is uncertainty in the deterioration process, the optimal condition that triggers resurfacing is not significantly changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号