首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The cost of nation wide travel surveys is high. Hence in many developing countries, planners have found it difficult to develop intercity transportation plans due to the non availability of origin‐destination trip matrices. This paper will describe a method for the intercity auto travel estimation for Sri Lanka with link traffic volume data.

The paper outlines the rationale of selecting the district capitals of Sri Lanka as its “cities,” the methodology for selecting the intercity road network, determination of link travel times from express bus schedules and the location of link volume counting positions.

Initially, the total auto travel demand model is formulated with various trip purpose sub‐models. This model is finally modified to a simple demand model with district urban population and travel times between city pairs as the exogenous variables, to overcome statistical estimation difficulties. The final demand model has statistics within the acceptable regions.

The advantages of a simple model are discussed and possible extensions are proposed.  相似文献   

2.
Optimal transit subsidy policy   总被引:1,自引:0,他引:1  
The basic justification for transit subsidy is that such a subsidy is necessary, given substantial economies of scale, in order to permit fares to be set at a level which will result in reasonably efficient use of the service. Efficiency is not, however, merely a matter of the level of the fares but even more of the fare structure and pattern. Major changes in fare patterns are needed to permit reasonable efficiency of utilization to be attained, and full advantage derived from subsidy. Differentiation according to time and direction, as well as the distance of travel, is required. Ideally, competing modes such as the private automobile should be priced at marginal cost, differentially by time and place, and the subsidy should be derived from taxes on land values in the areas where such values are enhanced by the presence of transit service at low fares. In the absence of such conditions, fares should differ from marginal cost in ways that take into account the impacts of transit fare variations on auto traffic and congestion, and on the subsidy requirements and the adverse impacts of the taxes imposed to finance the subsidy.In addition to these economic efficiency considerations there may be added considerations of distributional impact and political acceptability, which may modify the optimal solution somewhat but should not greatly change the main outlines of the patterns to be recommended.  相似文献   

3.
Japan's urban transportation system in the major transport spheres   总被引:1,自引:0,他引:1  
The urban areas in Japan have undergone rapid changes in the last two and one-half decades. At the same time, the urban transportation system has been faced with numerous problems which need to be solved urgently. This paper presents the development stage and problems in the three largest metropolitan areas, designated as transport spheres, in Japan. Japan's problems in urban transportation are similar to those of most Western nations with regard to such issues as rapid urbanization, growth in travel, increasing auto ownership, growing transit operating deficits, rising wages and air pollution. The differences are the large modal split of transit from automobile trips, major expansion of the rail transit network, and the large number of transit operators in each urban area in Japan. In addition, governmental policies to help solve the urban transport problems are briefly described. In order to make the policies effective, coordination among government agencies is required. The establishment of a unified government agency is regarded as the first priority in dealing with the urban transport problem. It is expected that the government will offer bold new countermeasures to cope with urban transportation problems.This report was accomplished with the kind assistance of Professor Jerry B. Schneider, Departments of Civil Engineering and Urban Planning, University of Washington, and Mr. Satoshi Inoue, an official of the Ministry of Transport in Japan, who is currently studying at the University of Washington.  相似文献   

4.
This paper presents a procedure for the estimation of origin‐destination (O‐D) matrices for a multimodal public transit network. The system consists of a number of favored public transit modes that are obtained from a modal split process in a traditional four‐step transportation model. The demand of each favored mode is assigned to the multimodal network, which is comprised of a set of connected links of different public transit modes. An entropy maximization procedure is proposed to simultaneously estimate the O‐D demand matrices of all favored modes, which are consistent with target data sets such as the boarding counts and line segment flows that are observed directly in the network. A case study of the Hong Kong multimodal transit network is used to demonstrate the effectiveness of the proposed methodology.  相似文献   

5.
We model and analyze optimal (welfare maximizing) prices and design of transport services in a bimodal context. Car congestion and transit design are simultaneously introduced and consumers choose based on the full price they perceive. The optimization variables are the congestion toll, the transit fare (and hence the level of subsidies) and transit frequency. We obtain six main results: (i) the optimal car-transit split is generally different from the total cost minimizing one; (ii) optimal congestion and transit price are interdependent and have an optimal frequency attached; (iii) the optimal money price difference together with the optimal frequency yield the optimal modal split; (iv) if this modal split is used in traditional stand-alone formulations – where each mode is priced independently–resulting congestion tolls and transit subsidies and fares are consistent with the optimal money price difference; (v) self-financing of the transport sector is feasible; and (vi) investment in car infrastructure induces an increase in generalized cost for all public transport users.  相似文献   

6.
7.
To study the effect of different transport policies on reducing the average comprehensive travel cost (CTC) of all travel modes, by increasing public transport modal share and decreasing car trips, an optimization model is developed based on travel cost utility. A nested logit model is applied to analyze trip modal split. A Genetic Algorithm is then used to determine the implementation of optimal solutions in which various transport policies are applied in order to reduce average CTC. The central urban region of Beijing is selected as the study area in this research. Different policies are analyzed for comparison, focusing on their optimal impacts on minimizing the average CTC utility of all travel modes by rationally allocating trips to different travel modes in the study area. It is found that the proposed optimization model provides a reasonable indication of the effect of policies applied.  相似文献   

8.
This paper presents a multiobjective planning model for generating optimal train seat allocation plans on an intercity rail line serving passengers with many‐to‐many origin‐destination pairs. Two planning objectives of the model are to maximise the operator's total passenger revenue and to minimise the passenger's total discomfort level. For a given set of travel demand, train capacity, and train stop‐schedules, the model is solved by fuzzy mathematical programming to generate a best‐compromise train seat allocation plan. The plan determines how many reserved and non‐reserved seats are to be allocated at each origin station for all subsequent destination stations on each train run operated within a specified operating period. An empirical study on the to‐be‐built Taiwan's high‐speed rail system is conducted to demonstrate the effectiveness of the model. The model can be used for any setting of travel demand and stop‐schedules with various train seating capacities.  相似文献   

9.
User oriented transit service is designed to meet the particular needs of a selected group of travelers. Transit Routes are located to provide convenient linkages between user's origin and destination in such a way that out-of-vehicle time, such as access and transfer time, is minimized. Planning transit routes requires understanding demographics, land use and travel patterns in an area. The dynamic nature of these systems necessitates regular review and analysis to insure that the transit system continues to meet the needs of the area it serves. Geographic Information Systems (GIS) provide a flexible framework for planning and analyzing transit routes and stops. Socioeconomic, demographic, housing, land use, and traffic data may be modeled in a GIS to identify efficient and effective corridors to locate routes. Part of the route location and analysis problem requires estimating population within the service area of a route. A route's service area is defined using walking distance or travel time. The problem of identifying service areas for park and ride or auto/bus users is not considered here, but assumed analogous to walk/bus trips. This paper investigates the accuracy and costs associated with the use of different attribute data bases to perform service area analysis for transit routes using GIS. A case study is performed for Logan, Utah, where a new fixed route service is operated. The case study illustrates the use of census data, postal data, data collected from aerial photographs, and data collected during a field survey using the network area analysis technique for transit service area analysis. This comparison allows us to describe the amount of error introduced by various spatial modeling techniques of data bases representing a variety of aggregation levels.  相似文献   

10.
Passenger transportation in most large cities relies on an efficient mass transit system, whose line configuration has direct impacts on the system operating cost, passenger travel time and line transfers. Unfortunately, the interplay between transit line configuration and passenger line assignment has been largely ignored in the literature. This paper presents a model for simultaneous optimization of transit line configuration and passenger line assignment in a general network. The model is formulated as a linear binary integer program and can be solved by the standard branch and bound method. The model is illustrated with a couple of minimum spanning tree networks and a simplified version of the general Hong Kong mass transit railway network.  相似文献   

11.
This paper investigates the optimal transit fare in a simple bimodal transportation system that comprises public transport and private car. We consider two new factors: demand uncertainty and bounded rationality. With demand uncertainty, travelers are assumed to consider both the mean travel cost and travel cost variability in their mode choice decision. Under bounded rationality, travelers do not necessarily choose the travel mode of which perceived travel cost is absolutely lower than the one of the other mode. To determine the optimal transit fare, a bi‐level programming is proposed. The upper‐level objective function is to minimize the mean of total travel cost, whereas the lower‐level programming adopts the logit‐based model to describe users' mode choice behaviors. Then a heuristic algorithm based on a sensitivity analysis approach is designed to solve the bi‐level programming. Numerical examples are presented to illustrate the effect of demand uncertainty and bounded rationality on the modal share, optimal transit fare and system performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes different policy scenarios to cut CO2 emissions caused by the urban mobility of passengers. More precisely, we compare the effects of the ‘direct tool’ of carbon tax, to a combination of ‘indirect tools’ – not originally aimed at reducing CO2 (i.e. congestion charging, parking charges and a reduction in public transport travel time) in terms of CO2 impacts through a change in the modal split. In our model, modal choices depend on individual characteristics, trip features (including the effects of policy tools), and land use at origin and destination zones. Personal “CO2 emissions budgets” resulting from the trips observed in the metropolitan area of Lille (France) in 2006 are calculated and compared to the situation related to the different policy scenarios. We find that an increase of 50% in parking charges combined with a cordon toll of €1.20 and a 10% travel time decrease in public transport services (made after recycling toll-revenues) is the winning scenario. The combined effects of all the policy scenarios are superior to their separate effects.  相似文献   

13.
The sensitivity of travel costs to changes in input flows in the Wardrop equilibrium problem is studied. Examples are given showing that both origin to destination and global travel costs may decrease as a result of an increase in input flows. Other examples show that, in the two-mode equilibrium assignment problem transit origin to destination travel costs may decrease as a result of an increase in automobile input flows.  相似文献   

14.
This paper proposes a bi-level programming model to solve the design problem for bus lane distribution in multi-modal transport networks. The upper level model aims at minimizing the average travel time of travelers, as well as minimizing the difference of passengers’ comfort among all the bus lines by optimizing bus frequencies. The lower level model is a multi-modal transport network equilibrium model for the joint modal split/traffic assignment problem. The column generation algorithm, the branch-and-bound algorithm and the method of successive averages are comprehensively applied in this paper for the solution of the bi-level model. A simple numerical test and an empirical test based on Dalian economic zone are employed to validate the proposed model. The results show that the bi-level model performs well with regard to the objective of reducing travel time costs for all travelers and balancing transit service level among all bus lines.  相似文献   

15.
Given a many-to-one bi-modal transportation network where each origin is connected to the destination by a bottleneck-constrained highway and a parallel transit line, we investigate the parking permit management methods to minimize traffic time cost and traffic emission cost simultaneously. More importantly, the optimal supply of parking spots is also discussed in the policies of parking permit. First, we derive the total travel costs and emission costs for the two cases of sufficient and insufficient parking spot provisions at the destination. Second, we propose a bi-objective model and solve the Pareto optimal parking permit distribution, given a certain level of parking supply. Third, we investigate the optimal parking supply in the policy of parking permit distribution, with the objectives of minimizing both total travel cost and traffic emission. Fourth, we provide a model of optimizing parking supply, in the policy of free trading of parking permits. Finally, the numerical examples are presented to illustrate the effectiveness of these schemes, and the numerical results show that restricting parking supply at the city center could be efficient to reduce traffic emission.  相似文献   

16.
Recent investment in urban ferry transport has created interest in what value such systems provide in a public transport network. In some cases, ferry services are in direct competition with other land-based transport, and despite often longer travel times passengers still choose water transport. This paper seeks to identify a premium attached to urban water transit through an identification of excess travel patterns. A one-month sample of smart card transaction data for Brisbane, Australia, was used to compare bus and ferry origin–destination pairs between a selected suburban location and the central business district. Logistic regression of the data found that ferry travel tended towards longer travel times (OR?=?2.282), suggesting passengers do derive positive utility from ferry journeys. The research suggests the further need to incorporate non-traditional measures other than travel time for deciding the value of water transit systems.  相似文献   

17.
This study examines mode choice behavior for intercity business and personal/recreational trips. It uses multinomial logit and nested logit methods to analyze revealed preference data provided by travelers along the Yong-Tai-Wen multimodal corridor in Zhejiang, China. Income levels are found to be positively correlated with mode share increases for high-speed rail (HSR), expressway-based bus, and auto modes, while travel time and trip costs are negatively correlated with modal shift. Longer distance trips trigger modal shifts to HSR services but prevent modal shift to expressway-based auto use due to escalation of fuel cost and toll charges. Travelers are less elastic in their travel time and cost for trips by nonexpressway-based auto use modes. The magnitude of elasticity for travel time is higher than trip costs for business trips and lower for personal/recreational trips. The study provides some policy suggestions for transportation planners and decision-makers.  相似文献   

18.
Abstract

A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost.  相似文献   

19.
Cities around the world are trying out a multitude of transportation policy and investment alternatives with the aim of reducing car-induced externalities. However, without a solid understanding of how people make their transportation and residential location choices, it is hard to tell which of these policies and investments are really doing the job and which are wasting precious city resources. The focus of this paper is the determinants of car ownership and car use for commuting. Using survey data from 1997 to 1998 collected in New York City, this paper uses discrete choice econometrics to estimate a model of the choices of car ownership and commute mode while also modeling the related choice of residential location.The main story told by this analysis is that New Yorkers are more sensitive to changes in travel time than they are to changes in travel cost. The model predicts that the most effective ways to reduce both auto ownership and car commuting involve changing the relative travel times for cars and transit, making transit trips faster by increasing both the frequency and the speed of service and making auto trips slower – perhaps simply by allowing traffic congestion. Population density also appears to have a substantial effect on car ownership in New York.  相似文献   

20.
A model is developed for jointly optimizing the characteristics of a rail transit route and its associated feeder bus routes in an urban corridor. The corridor demand characteristics are specified with irregular discrete distributions which can realistically represent geographic variations. The total cost (supplier plus user cost) of the integrated bus and rail network is minimized with an efficient iterative method that successively substitutes variable values obtained through classical analytic optimization. The optimized variables include rail line length, rail station spacings, bus headways, bus stop spacings, and bus route spacing. Computer programs are designed for optimization and sensitivity analysis. The sensitivity of the transit service characteristics to various travel time and cost parameters is discussed. Numerical examples are presented for integrated transit systems in which the rail and bus schedules may be coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号