首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-electrification efficiency-improving technologies and powertrain technologies for reducing the heavy-duty truck fuel consumption are studied. The study indicates that improvements in engine efficiency, aerodynamic drag and rolling resistance will benefit fuel economy significantly over the day drive and over-the-road highway driving cycles; 6–13% in fuel savings can be expected from each technology. Hybridization can achieve fuel saving of 16% and is financially attractive for the day drive cycle. Compared to the baseline Class 8 conventional trucks, an improvement of 20–22% and 28–50% in fuel economy by 2020 can be expected using non-electrification efficiency-improving and a combination of non-electrification and hybrid technologies. Fuel economy improvements of a factor of four to five can be achieved by hybridizing the heavy-duty trucks used on ocean ports.  相似文献   

2.
In this paper, a forward power-train plug-in hybrid electric vehicle model with an energy management system and a cycle optimization algorithm is evaluated for energy efficiency. Using wirelessly communicated predictive traffic data for vehicles in a roadway network, as envisioned in intelligent transportation systems, traffic prediction cycles are optimized using a cycle optimization strategy. This resulted in a 56-86% fuel efficiency improvements for conventional vehicles. When combined with the plug-in hybrid electric vehicle power management system, about 115% energy efficiency improvements were achieved. Further improvements in the overall energy efficiency of the network were achieved with increased penetration rates of the intelligent transportation assisted enabled plug-in hybrid electric vehicles.  相似文献   

3.
This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.  相似文献   

4.
Buses are the main transit mode in Brazil, transporting more than 55 million passengers per day. Most of these vehicles run on diesel oil causing a dependence on oil, extensive greenhouse gas emissions and increasing air pollution in urban areas. In order to improve this situation, options for Brazilian cities include the use of alternative fuels and new propulsion technologies, such as hybrid vehicles. This paper proposes a procedure for evaluating the performance of a recently developed hybrid‐drive technology. A simple procedure is presented to compare hybrid‐drive buses with conventional diesel buses in urban operations, particularly with respect to fuel economy. Next the potential for reducing diesel oil consumption through the use of hybrid‐drive buses is assessed. Field tests carried out by the authors indicate that fuel consumption improvement through the use of hybrid‐drive buses would certainly exceed 20%, resulting in lower fuel costs and carbon dioxide (CO2) emissions.  相似文献   

5.
Reduction of greenhouse gas emission and fuel consumption as one of the main goals of automotive industry leading to the development hybrid vehicles. The objective of this paper is to investigate the energy management system and control strategies effect on fuel consumption, air pollution and performance of hybrid vehicles in various driving cycles. In order to simulate the hybrid vehicle, the combined feedback–feedforward architecture of the power-split hybrid electric vehicle based on Toyota Prius configuration is modeled, together with necessary dynamic features of subsystem or components in ADVISOR. Multi input fuzzy logic controller developed for energy management controller to improve the fuel economy of a power-split hybrid electric vehicle with contrast to conventional Toyota Prius Hybrid rule-based controller. Then, effects of battery’s initial state of charge, driving cycles and road grade investigated on hybrid vehicle performance to evaluate fuel consumption and pollution emissions. The simulation results represent the effectiveness and applicability of the proposed control strategy. Also, results indicate that proposed controller is reduced fuel consumption in real and modal driving cycles about 21% and 6% respectively.  相似文献   

6.
This paper presents in-service data collected from over 300 alternative fuel vehicles and over 80 fueling stations to help fleets determine what types of applications and alternative fuels may help them reduce their environmental impacts and fuel costs. The data were compiled in 2011 by over 30 organizations in New York State using a wide variety of commercial vehicle types and technologies. Fuel economy, incremental vehicle purchase cost, fueling station purchase cost, greenhouse gas reductions, and fuel cost savings data clarifies the performance of alternative fuel vehicles and fuel stations. Data were collected from a range of vehicle types, including school buses, delivery trucks, utility vans, street sweepers, snow plows, street pavers, bucket trucks, paratransit vans, and sedans. CNG, hybrid, LPG, and electric vehicles were tracked.  相似文献   

7.
Environmental pollution and energy use in the light-duty transportation sector are currently regulated through fuel economy and emissions standards, which typically assess quantity of pollutants emitted and volume of fuel used per distance driven. In the United States, fuel economy testing consists of a vehicle on a treadmill, while a trained driver follows a fixed drive cycle. By design, the current standardized fuel economy testing system neglects differences in how individuals drive their vehicles on the road. As autonomous vehicle (AV) technology is introduced, more aspects of driving are shifted into functions of decisions made by the vehicle, rather than the human driver. Yet the current fuel economy testing procedure does not have a mechanism to evaluate the impacts of AV technology on fuel economy ratings, and subsequent regulations such as Corporate Average Fuel Economy targets. This paper develops a method to incorporate the impacts of AV technology within the bounds of current fuel economy test, and simulates a range of automated following drive cycles to estimate changes in fuel economy. The results show that AV following algorithms designed without considering efficiency can degrade fuel economy by up to 3%, while efficiency-focused control strategies may equal or slightly exceed the existing EPA fuel economy test results, by up to 10%. This suggests the need for a new near-term approach in fuel economy testing to account for connected and autonomous vehicles. As AV technology improves and adoption increases in the future, a further reimagining of drive cycles and testing is required.  相似文献   

8.
Energy-saving technologies have a difficult time being widely accepted in the marketplace when they have a high initial purchase price and deferred financial benefits. Consumers might not realize that, in the long-run, the financial benefits from reduced energy consumption offset much or all of the initial price premium. One strategy to address consumer misconception of this advantage is to supply information on the “total cost of ownership”, a metric which accounts for the purchase price, the cost of the fuel, and other costs over the ownership period. In this article, we investigate how providing information on five-year fuel cost savings and total cost of ownership affects the stated preferences of consumers to purchase a gasoline, conventional hybrid, plug-in hybrid, or battery electric vehicle. Through an online survey with an embedded experimental design using distinct labels, we find that respondent rankings of vehicles are unaffected by information on five-year fuel cost savings. However, adding information about total cost of ownership increases the probability that small/mid-sized car consumers express a preference to acquire a conventional hybrid, plug-in hybrid, or a battery-electric vehicle. No such effect is found for consumers of small sport utility vehicles. Our results are consistent with other findings in the behavioral economics literature and suggest that further evaluation of the effects of providing consumers with information on the total cost of vehicle ownership is warranted.  相似文献   

9.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

10.
Transformation of the motor vehicle fleet has been an important feature of the world’s peak car phenomenon. Very few urban transport studies have explored such important changes in large urban cities. Using an innovative green vehicle datasets constructed for 2009 and 2014, this paper investigates the ongoing change in urban private vehicle fleet efficiency (VFE) in Brisbane. The spatial patterns of VFE change were examined with social-spatial characteristics of the urban area. The results showed that the social and spatial effect of VFE changes remain uneven over urban space. The inner urban areas have experienced higher level of VFE change, whilst people in the outer and oil vulnerable areas showed a low tendency in shifting to more efficient vehicles. The implication of VFE change for future household vehicle adoption was also evaluated based on a cost-benefit analysis of new vehicle technology costs and expected fuel savings for households that choose a fuel efficient vehicle. The results show that imposing a stronger national fuel economy target in the long term would accelerate evolution of vehicle fleets and oil vulnerability reduction in Brisbane.  相似文献   

11.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

12.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   

13.
This paper presents a fuel efficient control strategy for a group of connected hybrid electric vehicles (HEVs) in urban road conditions. A hierarchical control architecture is proposed in this paper for every HEV, where the higher level and the lower level controller share information with each other and solve two different problems that aim at improving its fuel efficiency. The higher level controller of each HEV is considered to utilize traffic light information, through vehicle to infrastructure (V2I) communication, and state information of the vehicles in its near neighborhood, via vehicle to vehicle (V2V) communication. Apart from that, the higher level controller of each HEV uses the recuperation information from the lower level controller and provides it the optimal velocity profile by solving its problem in a model predictive control framework. Each lower level controller uses adaptive equivalent consumption minimization strategy (ECMS) for following their velocity profiles, obtained from the higher level controller, in a fuel efficient manner. In this paper, the vehicles are modeled in Autonomie software and the simulation results are provided in the paper that shows the effectiveness of the proposed control architecture.  相似文献   

14.
This study quantifies the energy and environmental impact of a selection of traffic calming measures using a combination of second-by-second floating-car global positioning system data and microscopic energy and emission models. It finds that traffic calming may result in negative impacts on vehicle fuel consumption and emission rates if drivers exert aggressive acceleration levels to speed up to their journeys. Consequently by eliminating sharp acceleration maneuvers significant savings in vehicle fuel consumption and emission rates are achievable through driver education. The study also demonstrates that high emitting vehicles produce CO emissions that are up to 25 times higher than normal vehicle emission levels while low emitting vehicles produce emissions that are 15–35% of normal vehicles. The relative increases in vehicle fuel consumption and emission levels associated with the sample traffic calming measures are consistent and similar for normal, low, and high emitting vehicles.  相似文献   

15.
ABSTRACT

Incidents are a major source of traffic congestion and can lead to long and unpredictable delays, deteriorating traffic operations and adverse environmental impacts. The emergence of connected vehicles and communication technologies has enabled travelers to use real-time traffic information. The ability to exchange traffic information among vehicles has tremendous potential impacts on network performance especially in the case of non-recurrent congestion. To this end, this paper utilizes a microscopic simulation model of traffic in El Paso, Texas to investigate the impacts of incidents on traffic operation and fuel consumption at different market penetration rates (MPR) of connected vehicles. Several scenarios are implemented and tested to determine the impacts of incidents on network performance in an urban area. The scenarios are defined by changing the duration of incidents and the number of lanes closed. This study also shows how communication technology affects network performance in response to congestion. The results of the study demonstrate the potential effectiveness of connected vehicle technology in improving network performance. For an incident with a duration of 900?s and MPR of 80%, total fuel consumption and total travel time decreased by approximately 20%; 26% was observed in network-wide travel time and fuel consumption at 100% MPR.  相似文献   

16.
Alternative vehicle technologies promise a sustainable future by reducing carbon emissions and pollution. However, their widespread adoption tends to be slow due to high costs and uncertainties in benefits. Using a life cycle-based approach, this study calculates ownership savings and societal benefits for various alternative vehicle technologies against their baseline vehicle technology (e.g. gasoline or diesel). The assessment is performed from a developing country context – in the Philippines. Furthermore, immediate and distant future scenarios are modeled. The immediate future scenario assesses costs and benefits if the shift is to happen now, while the distant future scenario considers the effect of widespread autonomous driving and ridesharing. The results of the study echo the significant societal benefits from electric- and fuel cell-powered vehicles found in literature, but they are hindered by high ownership costs. In the immediate future, the diesel hybrid electric vehicle can potentially have both positive societal and operational costs for public transportation. For a gasoline-powered private passenger car, a simple shift to diesel, 20% biodiesel or 85% methanol can be beneficial. In the distant future, it is expected that autonomous, rideshared vehicles can potentially lure people away from driving their own vehicles, because of lower costs per passenger-kilometer while sustaining the privacy and comfort of a private car.  相似文献   

17.
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.  相似文献   

18.
In an Intelligent Transport System (ITS) environment, the communication component is of great importance to support interactions between vehicles and roadside infrastructure. Previous studies have focused on the physical capability and capacity of the communication technologies, but the equally important development of suitable and efficient semantic content for transmission received notably less attention. Ontology is one promising approach for context modelling in ubiquitous computing environments, and in the transport domain it can be used both for context modelling and semantic contents for vehicular communications. This paper explores the development of an ontological model implementing relative geo-semantic information messages to support vehicle-to-vehicle communications. The proposed ontology model contains classes, objects, their properties/relations as well as some functions and query templates to represent and update the information of dynamic vehicles, inter-vehicle interactions and behaviour. This model was developed through a scenario enabling the evaluation of traffic conflict resolution approaches, by implementing a set of decision-making processes for intelligent vehicles. Given the scope of the proposed ontology modelling, it shows how vehicular communications can be used to update each vehicle’s context model. This work can be easily extended for more complex interactions among vehicles and the infrastructure.  相似文献   

19.
This paper presents results from a plug-in hybrid vehicle drive share program involving retrofitted hybrid electric vehicles. A potential for high fuel efficiency is indicated, however, the average fuel efficiency was only marginally better than conventional hybrid vehicles. This is due to the majority of vehicle miles traveled occurring on trips outside the “all electric” range and very short trips where fuel consumption is dominated by emissions control strategies. The work also considers the availability of the battery for vehicle to grid services and finds that there are a large number of trips in the afternoon period, typically when electrical demand is at a peak. Vehicle charging activity also tended towards daytime activity, contrary to the oft-assumed off-peak charging pattern.  相似文献   

20.
Vehicles travelling in actual urban areas are mostly in idle, low or medium speeds, which reflects engine part-load condition. These regularly visited engine conditions, in reality affect the fuel economy during actual driving. Thus, understanding the characteristics of the actual driving conditions will enable many other benefits besides legislation. This paper presents the development of a preliminary Malaysian urban drive cycle with the inclusion of the engine parameters and characteristics, acquired through an actual urban driving on numerous urban roads in Malaysia that represents the actual consumer’s daily driving experience. The actual engine parameters and its characteristics are integrated into the assessment measures in an attempt to formulate representable drive cycle and fuel consumption data. The initial drive cycle is composed of 17 sequences selected from the actual on-the-road conditions to represent the Malaysian urban driving. The average fuel economy of the established Malaysian urban drive cycle was then measured on a test bench using the same engine from the vehicle. The recorded fuel economy with Malaysian urban drive cycle is 8.5% below the actual Malaysian urban driving which is closer estimation to the actual driving compared to the current in-practice NEDC which shows to be 43.1% below the actual Malaysian urban driving. Thus, Malaysian urban drive cycle is better in representing the Malaysian urban driving conditions compared to the NEDC in terms of the average fuel economy measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号