首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The benefit, in terms of social surplus, from introducing congestion charging schemes in urban networks is depending on the design of the charging scheme. The literature on optimal design of congestion pricing schemes is to a large extent based on static traffic assignment, which is known for its deficiency in correctly predict travel times in networks with severe congestion. Dynamic traffic assignment can better predict travel times in a road network, but are more computational expensive. Thus, previously developed methods for the static case cannot be applied straightforward. Surrogate‐based optimization is commonly used for optimization problems with expensive‐to‐evaluate objective functions. In this paper, we evaluate the performance of a surrogate‐based optimization method, when the number of pricing schemes, which we can afford to evaluate (because of the computational time), are limited to between 20 and 40. A static traffic assignment model of Stockholm is used for evaluating a large number of different configurations of the surrogate‐based optimization method. Final evaluation is performed with the dynamic traffic assignment tool VisumDUE, coupled with the demand model Regent, for a Stockholm network including 1240 demand zones and 17 000 links. Our results show that the surrogate‐based optimization method can indeed be used for designing a congestion charging scheme, which return a high social surplus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper provides a modeling framework based on the system dynamics approach by which policy makers can understand the dynamic and complex nature of traffic congestion within a transportation socioeconomic system representation of a metropolitan area. This framework offers policy makers an assessment platform that focuses on the short- and long-term system behaviors arising from an area-wide congestion pricing policy along with other congestion mitigation policies. Since only a few cities in the world have implemented congestion pricing and several are about to do so, a framework that helps policy makers to understand the impacts of congestion pricing is currently quite relevant. Within this framework, improved bus and metro capacities contribute to the supply dynamics which in turn affect the travel demand of individuals and their choice of different transportation modes. Work travel and social networking activities are assumed to generate additional travel demand dynamics that are affected by travelers’ perception of the level of service of the different transportation modes, their perception of the congestion level, and the associated traveling costs. It is assumed that the, population, tourism and employment growth are exogenous factors that affect demand. Furthermore, this paper builds on a previously formulated approach where fuzzy logic concepts are used to represent linguistic variables assumed to describe consumer perceptions about transportation conditions.  相似文献   

3.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

4.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

5.
It is widely recognized that precise estimation of road tolls for various pricing schemes requires a few pieces of information such as origin–destination demand functions, link travel time functions and users’ valuations of travel time savings, which are, however, not all readily available in practice. To circumvent this difficulty, we develop a convergent trial-and-error implementation method for a particular pricing scheme for effective congestion control when both the link travel time functions and demand functions are unknown. The congestion control problem of interest is also known as the traffic restraint and road pricing problem, which aims at finding a set of effective link toll patterns to reduce link flows to below a desirable target level. For the generalized traffic equilibrium problem formulated as variational inequalities, we propose an iterative two-stage approach with a self-adaptive step size to update the link toll pattern based on the observed link flows and given flow restraint levels. Link travel time and demand functions and users’ value of time are not needed. The convergence of the iterative toll adjustment algorithm is established theoretically and demonstrated on a set of numerical examples.  相似文献   

6.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

7.
Recent studies on the new congestion reduction method―tradable credit scheme rely on the full information of speed‐flow relationship, demand function, and generalized cost. As analytical travel demand, functions are difficult to establish in practice. This paper develops a trial and error method for selecting optimal credit schemes for general networks in the absence of demand functions. After each trial of tradable credit scheme, the credit charging scheme and total amount of credits to be distributed are updated by both observed link flows at traffic equilibrium and revealed credit price at market equilibrium. The updating strategy is based on the method of successive averages and its convergence is established theoretically. Our numerical experiments demonstrate that the method of successive averages based trial and error method for tradable credit schemes has a lower convergence speed in comparison with its counterpart for congestion pricing and could be enhanced by exploring more efficient methods that make full use of credit price information. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Cruising-for-parking constraints mobility in urban networks. Car-users may have to cruise for on-street parking before reaching their destinations. The accessibility and the cost of parking significantly influence people's travel behavior (such as mode choice, or parking facility choice between on-street and garage). The cruising flow causes delays eventually to everyone, even users with destinations outside limited parking areas. It is therefore important to understand the impact of parking limitation on mobility, and to identify efficient parking policies for travel cost reduction. Most existing studies on parking fall short in reproducing the dynamic spatiotemporal features of traffic congestion in general, lack the treatment of dynamics of the cruising-for-parking phenomenon, or require detailed input data that are typically costly and difficult to collect. In this paper, we propose an aggregated and dynamic approach for modeling multimodal traffic with the treatment on parking, and utilize the approach to design dynamic parking pricing strategies. The proposed approach is based on the Macroscopic Fundamental Diagram (MFD), which can capture congestion dynamics at network-level for single-mode and bi-modal (car and bus) systems. A parsimonious parking model is integrated into the MFD-based multimodal modeling framework, where the dynamics of vehicular and passenger flows are considered with a change in the aggregated behavior (e.g. mode choice and parking facility choice) caused by cruising and congestion. Pricing strategies are developed with the objective of reducing congestion, as well as lowering the total travel cost of all users. A case study is carried out for a bi-modal city network with a congested downtown region. An elegant feedback dynamic parking pricing strategy can effectively reduce travel delay of cruising and the generic congestion. Remarkably, such strategy, which is applicable in real-time management with limited available data, is fairly as efficient as a dynamic pricing scheme obtained from system optimum conditions and a global optimization with full information about the future states of the system. Stackelberg equilibrium is also investigated in a competitive behavior between different parking facility operators. Policy indications on on-street storage capacity management and pricing are provided.  相似文献   

9.
The example of Singapore shows that rapid urban and economic growth does not have to bring traffic congestion and pollution. Singapore has chosen to restrain car traffic demand due to its limited land supply. Transport policy based on balanced development of road and transit infrastructure and restraint of traffic has been consistently implemented for the past 30 years. Combined with land use planning, it resulted in a modern transport system, which is free from major congestion and provides users with different travel alternatives. As the economic growth caused a substantial increase in demand for cars, several pricing policies were introduced with the aim of restraining car ownership and usage. Growth of the vehicle population is now controlled and potentially congested roads are subject to road pricing. These measures help to keep the roads free from major congestion, maintain car share of work trips below 25% and keep the transport energy usage low. Although Singapore conditions are in many aspects unique, its travel demand experience can provide useful lessons for other rapidly growing cities in Asia.
Piotr S. OlszewskiEmail:
  相似文献   

10.
Network pricing serves as an instrument for congestion management, however, agencies and planners often encounter problems of estimating appropriate toll prices. Tolls are commonly estimated for a single-point deterministic travel demand, which may lead to imperfect policy decisions due to inherent uncertainties in future travel demand. Previous research has addressed the issue of demand uncertainty in the pricing context, but the elastic nature of demand along with its uncertainty has not been explicitly considered. Similarly, interactions between elasticity and uncertainty of demand have not been characterized. This study addresses these gaps and proposes a framework to estimate nearest optimal first-best tolls under long-term stochasticity in elastic demand. We show first that the optimal tolls under the deterministic-elastic and stochastic-elastic demand cases coincide when cost and demand functions are linear, and the set of equilibrium paths is constant. These assumptions are restrictive, so three larger networks are considered numerically, and the subsequent pricing decisions are assessed. The results of the numerical experiments suggest that in many cases, optimal pricing decisions under the combined stochastic-elastic demand scenario resemble those when demand is known exactly. The applications in this study thus suggest that inclusion of demand elasticity offsets the need of considering future demand uncertainties for first-best congestion pricing frameworks.  相似文献   

11.
The rapid increase in private car use in large metropolitan areas has led to irrational travel mode splits and severe traffic problems. Traffic demand management (TDM) is an effective policy to achieve a more sustainable development of traffic systems. This study analyzes the relationships between TDM policy, mode split, and travel mode choice using Stackelberg game theory. Then, using 0–1 programming, it establishes a combination of TDM policy instruments that can achieve a more sustainable mode split in a city and provides a case study in China. The method presented in this research has strong theoretical implications for TDM policymakers.  相似文献   

12.
Traveler behavior plays a role in the effectiveness of travel demand management (TDM) policies. Personal travel management is explored in this paper by analyzing individuals' adoption and consideration of 17 travel‐related alternatives in relation to socio‐demographic, mobility, travel‐related attitude, personality and lifestyle preference variables. The sample comprises 1282 commuters living in urban and suburban neighborhoods of the San Francisco Bay Area. Among the findings: females were more likely to have adopted/considered the more ‘costly’ strategies; those with higher mobility were more likely to have adopted/considered travel‐maintaining as well as travel‐reducing strategies; and those who like travel and want to do more are less likely to consider travel‐reducing strategies. These findings, when combined with those of earlier work on this subject, present a compelling argument for the need to further understand traveler behavior – particularly in response to congestion and TDM policies.  相似文献   

13.
This paper explores the effects of road user charging throughout England. It develops a model to test charging scenarios including revenue raising and revenue neutral charging options, and economically efficient pricing. For each scenario we estimate effects on traffic volumes, user charges and fares, subsidies, environmental costs, benefits to consumers, government revenue, and overall net benefits. We show that appropriate charging structures coupled with compensating reductions in existing motoring taxes can make a real difference to traffic growth, congestion and environmental damage, and can relieve pressure to build new roads.  相似文献   

14.
Some travel demand management policies such as road pricing have been widely studied in literature. Rationing policies, including vehicle ownership quota and vehicle usage restrictions, have been implemented in several megaregions to address congestion and other negative transportation externalities, but not well explored in literature. Other strategies such as Vehicle Mileage Fee have not been well accepted by policy makers, but attract growing research interest. As policy makers face an increasing number of policy tools, a theoretical framework is needed to analyze these policies and provide a direct comparison of their welfare implications such as efficiency and equity. However, such a comprehensive framework does not exist in literature. To bridge this gap, this study develops an analytical framework for analyzing and comparing travel demand management policies, which consists of a mathematical model of joint household vehicle ownership and usage decisions and welfare analysis methods based on compensating variation and consumer surplus. Under the assumptions of homogenous users and single time period, this study finds that vehicle usage rationing performs better when relatively small percentages of users (i.e. low rationing ratio) are rationed off the roads and when induced demand elasticity resulting from congestion mitigation is low. When the amount of induced demand exceeds a certain level, it is shown analytically that vehicle usage restrictions will always cause welfare losses. When the policy goal is to reduce vehicle travel by a fixed portion, road pricing provides a larger welfare gain. The performance of different policies is influenced by network congestion and congestibility. This paper further generalizes the model to consider heterogenous users and demonstrates how it can be applied for policy analysis on a real network after careful calibration.  相似文献   

15.
A driver is one of the main components in a transportation system that influences the effectiveness of any active demand management (ADM) strategies. As such, the understanding on driver behavior and their travel choice is crucial to ensure the successful implementation of ADM strategies in alleviating traffic congestion, especially in city centres. This study aims to investigate the impact of traffic information dissemination via traffic images on driver travel choice and decision. A relationship of driver travel choice with respect to their perceived congestion level is developed by an integrated framework of genetic algorithm–fuzzy logic, being a new attempt in driver behavior modeling. Results show that drivers consider changing their travel choice when the perceived congestion level is medium, in which changing departure time and diverting to alternative roads are two popular choices. If traffic congestion escalates further, drivers are likely to cancel their trip. Shifting to public transport system is the least likely choice for drivers in an auto-dependent city. These findings are important and useful to engineers as they are required to fully understand driver (user) sensitivity to traffic conditions so that relevant active travel demand management strategies could be implemented successfully. In addition, engineers could use the relationships established in this study to predict drivers’ response under various traffic conditions when carrying out modeling and impact studies.  相似文献   

16.
In this paper, we investigate an area-based pricing scheme for congested multimodal urban networks with the consideration of user heterogeneity. We propose a time-dependent pricing scheme where the tolls are iteratively adjusted through a Proportional–Integral type feedback controller, based on the level of vehicular traffic congestion and traveler’s behavioral adaptation to the cost of pricing. The level of congestion is described at the network level by a Macroscopic Fundamental Diagram, which has been recently applied to develop network-level traffic management strategies. Within this dynamic congestion pricing scheme, we differentiate two groups of users with respect to their value-of-time (which related to income levels). We then integrate incentives, such as improving public transport services or return part of the toll to some users, to motivate mode shift and increase the efficiency of pricing and to attain equitable savings for all users. A case study of a medium size network is carried out using an agent-based simulator. The developed pricing scheme demonstrates high efficiency in congestion reduction. Comparing to pricing schemes that utilize similar control mechanisms in literature which do not treat the adaptivity of users, the proposed pricing scheme shows higher flexibility in toll adjustment and a smooth behavioral stabilization in long-term operation. Significant differences in behavioral responses are found between the two user groups, highlighting the importance of equity treatment in the design of congestion pricing schemes. By integrating incentive programs for public transport using the collected toll revenue, more efficient pricing strategies can be developed where savings in travel time outweigh the cost of pricing, achieving substantial welfare gain.  相似文献   

17.
Abstract

Substantial changes in urban transport policy have taken place over the past decade. The concern with expanding infrastructure and the preoccupation with providing sufficient road capacity to meet the increasing demand of unrestricted car use, which characterized transport policy in the 1950s and 1960s, has gradually given way to the idea that there is a need to restrain motor traffic if urban society is to function efficiently. A variety of restrictive physical traffic management, land use planning and economic policies have, in consequence, been pursued. One option which has attracted considerable attention in the academic literature, but which has been received more cooly by policy‐makers, is the possibility of optimizing urban traffic congestion through the imposition of road pricing. The introduction and relative success of the area licensing scheme in Singapore has added fuel to the arguments of the advocates of such a policy. This review is not directly concerned with either the experiment with road pricing in Singapore nor the theoretical debates which have taken place concerning the potential merits and defects of such policies but rather looks at the applied work in the United States which has looked into the practical implications of road pricing for its cities. Further, it seeks to explore, again drawing on American experiences, just why there has been so much opposition to the employment of economic pricing principles in the urban road transport market. The author presents the results of an SSRC sponsored study into the practical problems of introducing road pricing to cities in the United States.  相似文献   

18.
Abstract

Malaysia is one of the few countries in the world that provides a fuel subsidy to consumers. Due to the recent economic crisis, the Malaysian Government decided to revise its fuel subsidization policy from a fixed price subsidy to a floating price subsidy dependent on global oil demand. Recognizing that the change in fuel subsidization policy can have an impact on travel behavior, this article investigates the short-term impact of the policy change on private and public transportation in the Klang Valley region of Malaysia. Spectral analyses are performed to investigate if the policy change has an impact on private vehicle travel demand, measured in terms of road traffic, and short-term travel demand elasticity with respect to fuel price is estimated. To measure the impact on the public transportation system, the demand cross-elasticity values of rail transit and buses are also estimated. It was found that traffic flow reduces with an increase in fuel price, although elasticity and cross-elasticity values obtained are low. The article finds that there is a potential mode shift from private vehicles to rail transit with increasing fuel price. It is demonstrated that reducing fuel price subsidy can be an effective travel demand management strategy to alleviate congestion.  相似文献   

19.
This paper addresses the equilibrium traffic assignment problem involving battery electric vehicles (BEVs) with flow-dependent electricity consumption. Due to the limited driving range and the costly/time-consuming recharging process required by current BEVs, as well as the scarce availability of battery charging/swapping stations, BEV drivers usually experience fear that their batteries may run out of power en route. Therefore, when choosing routes, BEV drivers not only try to minimize their travel costs, but also have to consider the feasibility of their routes. Moreover, considering the potential impact of traffic congestion on the electricity consumption of BEVs, the feasibility of routes may be determined endogenously rather than exogenously. A set of user equilibrium (UE) conditions from the literature is first presented to describe the route choice behaviors of BEV drivers considering flow-dependent electricity consumption. The UE conditions are then formulated as a nonlinear complementarity model. The model is further formulated as a variational inequality (VI) model and is solved using an iterative solution procedure. Numerical examples are provided to demonstrate the proposed models and solution algorithms. Discussions of how to evaluate and improve the system performance with non-unique link flow distribution are offered. A robust congestion pricing model is formulated to obtain a pricing scheme that minimizes the system travel cost under the worst-case tolled flow distribution. Finally, a further extension of the mathematical formulation for the UE conditions is provided.  相似文献   

20.
Road pricing as an economic construct is not a new phenomenon in transportation research. Whilst fuel taxation and tolling of roads are common ways of raising revenue in many countries, these initiatives are primarily aimed at road infrastructure financing. Worldwide there has been growing interest in pricing structures designed to also manage the growing levels of traffic congestion and, in recent times, an increasing focus on generating reductions in carbon emissions from vehicle ownership and use. This paper presents a stated choice experiment undertaken in response to the increasing interest in the environmental externalities of travel behaviour. The aim of this choice experiment is to identify the potential to switch to more fuel efficient cars that emit lower emissions, under differing pricing and technology scenarios. Results indicate that annual and variable emissions surcharges targeted very specifically to vehicle emission rates have a noticeable role in modifying vehicle purchasing decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号