首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transit development is one planning strategy that seeks to partially overcome limitations of low-density single use car oriented development styles. While many studies focus on how residential proximity to transit influences the travel behaviors of individuals, the effect of workplace proximity to transit is less understood. This paper asks, does working near a light rail transit station influence the travel behaviors of workers differently than workers living near a station? We begin by examining workers’ commute mode based on their residential and workplace proximity to transit station areas. Next, we analyze the ways in which personal travel behaviors differ between those who drive to work and those who do not. The data came from a 2009 travel behavior survey in the Denver, Colorado metropolitan area, which contains 8000 households, 16,000 individuals, and nearly 80,000 trips. We measure sustainable travel behaviors as reduced mileage, reduced number of trips, and increased use of non-car transportation. The results of this study indicate that living near a transit station area by itself does not increase the likelihood of using non-car modes for work commutes. But if the destination (work) is near a transit station area, persons are less likely to drive a car to work. People who both live and work in a transit station area are less likely to use a car and more likely to take non-car modes for both work and non-work (personal) trips. Especially for persons who work near a transit station area, the measures of personal trips and distances show a higher level of mobility for non-car commuters than car commuters – that is, more trips and more distant trips. The use of non-car modes for personal trips is most likely to occur by non-car commuters, regardless of their transit station area relationship.  相似文献   

2.
The walking trip from an origin or destination to a bus stop or transit station can be a barrier to riding transit for older adults (over age 60) who may walk more slowly than others or experience declining physical mobility. This article examines the relationship between transit ridership and proximity to fixed-route transit stations using survey data for older adults in Buffalo and Erie County, New York. Demographic and socio-economic characteristics—including age, sex, race, income, possessing a driver’s license, frequency of leaving home, and personal mobility limitations—are tested but do not display, in bi-variate analysis, statistically significant differences for transit riders versus non-transit riders. However, features of the built environment—including distance (actual and perceived) between home and transit stop, transit service level, population density, number of street intersections, metropolitan location, and neighborhood crime (property and violent) rate—display statistically significant differences for transit riders versus non-transit riders. Both objective and perceived walking distances to access fixed-route transit show statistically significant differences between transit riders and non-transit riders. Average walking distance from home to transit for non-transit riders—who mostly live in suburbs—is three times greater than average walking distance between home and the nearest transit stop for transit riders—who mostly live in the central city. When asked how near a bus stop is to their homes, transit riders slightly overestimate the actual distance, while non-transit riders underestimate the distance.  相似文献   

3.
Intercity bus (ICB), deviated fixed route transit (DFRT) and demand responsive transit (DRT) are three major modes of rural public transportation. This paper focuses on the characteristics and motivations of DFRT and DRT riders, compared to non-riders, in Tennessee. A rural DFRT rider survey, a rural DRT rider survey and a rural (non-rider) resident survey were performed. It is found that DFRT and DRT riders have similar demographics to ICB riders. The most common trip purpose for DFRT and DRT passengers is medical care, which is different from ICB trips. Ninety percent of the riders have difficulty finding alternative transportation modes, suggesting they are captive riders, not choice riders. Regression results indicate that people choosing transit modes tend to have lower personal and household income, own fewer cars, to not be homeowners, and be of non-white race. Rural residents who receive more education are more likely to be open-minded to use rural transit.  相似文献   

4.
5.
Two on-board surveys were conducted to determine how transit riders perceive transfers. The surveys were conducted before and after the imposition of a transfer in the middle of an existing bus route. Results of the surveys showed that riders perceive bus transit trips as significantly worse when the trip requires a transfer, even if transfer time is neglibible.  相似文献   

6.
The use of privately owned vehicles (POVs) contributes significantly to US energy consumption (EC) and greenhouse gas emissions (GHGe). Strategies for reducing POV use include shifting trips to other modes, particularly public transit. Choices to use transit are based on characteristics of travelers, their trips, and the quality of competing transportation services. Here we focus on the proximity of rail stations to trip origins/destinations as a factor affecting mode choice for work trips. Using household travel survey data from Chicago, we evaluate the profile of journey-to-work (JTW) trips, assessing mode share and potential for more travelers to use rail. For work trips having the origin/destination as close as 1 mile from rail transit stations, POVs were still the dominant travel mode, capturing as much as 61%, followed by rail use at 14%. This high degree of POV use coupled with the proportion of JTW trips within close proximity to rail stations indicated that at least some of these trips may be candidates for shifting from POV to rail. For example, shifting all work trips with both the origin/destination within 1 mile of commuter rail stations would potentially reduce the energy associated with all work-related POV driving trips by a maximum of 24%. Based on the analysis of trips having the origin and destination closest to train stations, a complete shift in mode from POV to train could exceed CO2 reduction goals targeted in the Chicago Climate Action Plan. This could occur with current settlement patterns and the use of existing infrastructure. However, changes in traveler behavior and possibly rail operation would be necessary, making policy to motivate this change essential.  相似文献   

7.
In recent years, transit planners are increasingly turning to simpler, faster, and more spatially detailed “sketch planning” or “direct demand” models for forecasting rail transit boardings. Planners use these models for preliminary review of corridors and analysis of station-area effects, instead of or prior to four-step regional travel demand models. This paper uses a sketch-planning model based on a multiple regression originally fitted to light-rail ridership data for 268 stations in nine U.S. cities, and applies it predictively to the Phoenix, Arizona light-rail starter line that opened in December, 2008. The independent variables in the regression model include station-specific trip generation and intermodal–access variables as well as system-wide variables measuring network structure, climate, and metropolitan-area factors. Here we compare the predictions we made before and after construction began to pre-construction Valley Metro Rail predictions and to the actual boardings data for the system’s first 6 months of operations. Depending on the assumed number of bus lines at each station, the predicted total weekday ridership ranged from 24,767 to 37,907 compared with the average of 33,698 for the first 6 months, while the correlation of predicted and observed station boardings ranged from r = 0.33 to 0.47. Sports venues, universities, end-of-line stations, and the number of bus lines serving each station appear to account for the major over- and under-predictions at the station level.  相似文献   

8.
Transit oriented development (TOD) has been an important topic for urban transportation planning research and practice. This paper is aimed at empirically examining the effect of rail transit station-based TOD on daily station passenger volume. Using integrated circuit (IC) card data on metro passenger volumes and cellular signaling data on the spatial distribution of human activities in Shanghai, the research identifies variations in ridership among rail transit stations. Then, regression analysis is performed using passenger volume in each station as the dependent variable. Explanatory variables include station area employment and population, residents’ commuting distances, metro network accessibility, status as interchange station, and coupling with commercial activity centers. The main findings are: (1) Passenger volume is positively associated with employment density and residents’ commuting distance around station; (2) stations with earlier opening dates and serving as transfer nodes tend to have positive association with passenger volumes; (3) metro stations better integrated with nearby commercial development tend to have larger passenger volumes. Several implications are drawn for TOD planning: (1) TOD planning should be integrated with rail transit network planning; (2) location of metro stations should be coupled with commercial development; (3) high employment densities should be especially encouraged as a key TOD feature; and (4) interchange stations should be more strategically positioned in the planning for rail transit network.  相似文献   

9.
A model is developed for jointly optimizing the characteristics of a rail transit route and its associated feeder bus routes in an urban corridor. The corridor demand characteristics are specified with irregular discrete distributions which can realistically represent geographic variations. The total cost (supplier plus user cost) of the integrated bus and rail network is minimized with an efficient iterative method that successively substitutes variable values obtained through classical analytic optimization. The optimized variables include rail line length, rail station spacings, bus headways, bus stop spacings, and bus route spacing. Computer programs are designed for optimization and sensitivity analysis. The sensitivity of the transit service characteristics to various travel time and cost parameters is discussed. Numerical examples are presented for integrated transit systems in which the rail and bus schedules may be coordinated.  相似文献   

10.
With rail travel largely seen to be a more sustainable method than road-based transport, this paper examines the market segments amongst existing motorists that would be most likely to travel by train in the UK. The analysis is based on a large survey in London and the south-east of England, the area surrounding the routes operated by the train company First Capital Connect. Findings show that train travellers tend to be middle-aged and of a higher social grade, typically taking commuting or business trips. Individuals living within four miles of a station are considerably more likely to travel by rail than those further away. Given the competition from road-based transport, it is of particular interest that the measure highlighted to increase rail use for those living further away from the rail network is to enhance car parking at train stations.  相似文献   

11.
In spite of a broad consensus among transportation analysts that bus rapid transit, whether operating on exclusive rights-of-way or on uncongested high occupancy vehicle lanes or general purpose limited access facilities, provides higher performance and has significantly lower costs per passenger trip than rail transit in medium and low density cities, nearly all Sunbelt cities are building or planning heavy or light rail systems. This paper reviews previous studies of the cost-effectiveness of heavy and light rail transit with bus-rapid transit and the growing experience with busways and transitways and concludes, once again, that some form of bus rapid transit would be a far more effective way of providing improved transit in these cities than heavy or light rail transit. Not only would bus rapid transit be substantially cheaper, but it would provide a higher quality of service than light or heavy rail transit for virtually all users. Finally, the paper speculates on the reasons for the continued, “blind” commitment to rail transit by policymakers in Sunbelt cities and on the refusal of policymakers in all but a few of these cities to even consider bus rapid transit.  相似文献   

12.
This paper summarizes and updates the findings from an earlier study by the same authors of transit systems in Houston (all bus) and San Diego (bus and light rail). Both systems achieved unusually large increases in transit ridership during a period in which most transit systems in other metropolitan areas were experiencing large losses. Based on ridership models estimated using cross section and time series data, the paper quantifies the relative contributions of policy variables and factors beyond the control of transit operators on ridership growth. It is found that large ridership increases in both areas are caused principally by large service increases and fare reductions, as well as metropolitan employment and population growth. In addition, the paper provides careful estimates of total and operating costs per passenger boarding and per passenger mile for Houston's bus operator and San Diego's bus and light rail operators. These estimates suggest that the bus systems are more cost-effective than the light rail system on the basis of total costs. Finally, the paper carries out a series of policy simulations to analyze the effects of transit funding levels and metropolitan development patterns on transit ridership and farebox recovery ratio.  相似文献   

13.
Previous research has combined automated fare-collection (AFC) and automated vehicle-location (AVL) data to infer the times and locations of passenger origins, interchanges (transfers), and destinations on multimodal transit networks. The resultant origin–interchange–destination flows (and the origin–destination (OD) matrices that comprise those flows), however, represent only a sample of total ridership, as they contain only those journeys made using the AFC payment method that have been successfully recorded or inferred. This paper presents a method for scaling passenger-journey flows (i.e., linked-trip flows) using additional information from passenger counts at each station gate and bus farebox, thereby estimating the flows of non-AFC passengers and of AFC passengers whose journeys were not successfully inferred.The proposed method is applied to a hypothetical test network and to AFC and AVL data from London’s multimodal public transit network. Because London requires AFC transactions upon both entry and exit for rail trips, a rail-only OD matrix is extracted from the estimated multimodal linked-trip flows, and is compared to a rail OD matrix generated using the iterative proportional fitting method.  相似文献   

14.
Central to the concept of Transit Oriented Development (TOD) is a retail core situated around stations. However, successful retail near light rail transit stations has been elusive. Despite significant implications for land use, transportation, and economic development planning, little research exists to explain the gap between TOD concept and reality. We hypothesize that the density, diversity, and design characteristics central to the theory of TODs drive retail success. We implement a TOD Index proposed in the literature to score 474 light rail station areas in 11 metropolitan areas according to the presence and magnitude of those density, diversity, and design characteristics. A series of robustly-developed multilevel models support our hypothesis: TOD Index scores significantly predict station area retail employment, ceteris paribus. An evaluation of its subcomponents individually (block size, which relates to walkability; land use mix; and activity density) suggests activity density may be the driving force in this relationship. Our research works to move the conversation away from an assumption that transit stations and retail naturally co-exist and toward more intentional station area design choices demonstrated to drive retail employment.  相似文献   

15.
Waiting time in transit travel is often perceived negatively and high-amenity stops and stations are becoming increasingly popular as strategies for mitigating transit riders’ aversion to waiting. However, beyond recent evidence that realtime transit arrival information reduces perceived waiting time, there is limited empirical evidence as to which other specific station and stop amenities can effectively influence user perceptions of waiting time. To address this knowledge gap, the authors conducted a passenger survey and video-recorded waiting passengers at different types of transit stops and stations to investigate differences between survey-reported waiting time and video-recorded actual waiting time. Results from the survey and video observations show that the reported wait time on average is about 1.21 times longer than the observed wait time. Regression analysis was employed to explain the variation in riders’ reported waiting time as a function of their objectively observed waiting time, as well as station and stop amenities, weather, time of the day, personal demographics, and trip characteristics. Based on the regression results, most waits at stops with no amenities are perceived at least 1.3 times as long as they actually are. Basic amenities including benches and shelters significantly reduce perceived waiting times. Women waiting for more than 10 min in perceived insecure surroundings report waits as dramatically longer than they really are, and longer than do men in the same situation. The authors recommend a focus on providing basic amenities at stations and stops as broadly as possible in transit systems, and a particular focus on stops on low-frequency routes and in less safe areas for security measures.  相似文献   

16.
The current study contributes to the literature on transit ridership by considering daily boarding and alighting data from a recently launched commuter rail system in Orlando, Florida – SunRail. The analysis is conducted based on daily boarding and alighting data for 10 months for the year 2015. With the availability of repeated observations for every station, the potential impact of common unobserved factors affecting ridership variables are considered. The current study develops an estimation framework, for boarding and alighting separately, that accounts for these unobserved effects at multiple levels – station, station-week and station-day. In addition, the study examines the impact of various observed exogenous factors such as station level, transportation infrastructure, transit infrastructure, land use, built environment, sociodemographic and weather variables on ridership. The model system developed will allow us to predict ridership for existing stations in the future as well as potential ridership for future expansion sites.  相似文献   

17.
针对上海轨道交通5号线沿线环境以及轻轨车站的特点,介绍了该工程车站建筑的设计特色,并对设计布置做了多方面的探讨,包括车站功能完善、规模控制、设计方法、建筑造型、结合环境以及投资控制等。  相似文献   

18.

In urban areas where transit demand is widely spread, passengers may be served by an intermodal transit system, consisting of a rail transit line (or a bus rapid transit route) and a number of feeder routes connecting at different transfer stations. In such a system, passengers may need one or more transfers to complete their journey. Therefore, scheduling vehicles operating in the system with special attention to reduce transfer time can contribute significantly to service quality improvements. Schedule synchronization may significantly reduce transfer delays at transfer stations where various routes interconnect. Since vehicle arrivals are stochastic, slack time allowances in vehicle schedules may be desirable to reduce the probability of missed connections. An objective total cost function, including supplier and user costs, is formulated for optimizing the coordination of a general intermodal transit network. A four-stage procedure is developed for determining the optimal coordination status among routes at every transfer station. Considering stochastic feeder vehicle arrivals at transfer stations, the slack times of coordinated routes are optimized, by balancing the savings from transfer delays and additional cost from slack delays and operating costs. The model thus developed is used to optimize the coordination of an intermodal transit network, while the impact of a range of factors on coordination (e.g., demand, standard deviation of vehicle arrival times, etc) is examined.  相似文献   

19.
Cities around the world and in the US are implementing bikesharing systems, which allow users to access shared bicycles for short trips, typically in the urban core. Yet few scholars have examined the determinants of bikeshare station usage using a fine-grained approach. We estimate a series of Bayesian regression models of trip generation at stations, examining the effects bicycle infrastructure, population and employment, land use mix, and transit access separately by season of the year, weekday/weekend, and user type (subscriber versus casual). We find that bikeshare stations located near busy subway stations and bicycle infrastructure see greater utilization, and that greater population and employment generally predict greater usage. Our findings are nuanced, however; for instance, those areas with more residential population are associated with more trips by subscribers and on both weekdays and non-working days; however, the effect is much stronger on non-working days. Additional nuances can be found in how various land use variables affect bikeshare usage. We use our models, based on 2014 data, to forecast the trips generated at new stations opened in 2015. Results suggest there is large variation in predictive power, partly caused by variation in weather, but also by other factors that cannot be predicted. This leads us to the conclusion that the nuances we find in our inferential analysis are more useful for transportation planners.  相似文献   

20.
Urbanization and demands for mobility have spurred the development of mass rapid transit infrastructure in industrializing Asia. Differences between the character of pre-existing urban structure in these localities and worldwide precedents suggest a need for studies examining how new rapid transit systems function locally. This study of Bangkok’s elevated and underground rail systems identifies relationships between the built environment and pedestrian behavior surrounding stations. Based on details of 1,520 pedestrian egress trips from three elevated and three underground stations in 2006, multiple regression and analysis of variance (ANOVA) revealed that types of pedestrian destinations, reflecting land uses, were related to length of walking egress trips. Trips to shopping centers and office buildings were longer, while trips to eating places were shorter. The most common type of pedestrian trip recorded was to another vehicle, and trips to automobile taxis and motorcycle taxis figured prominently. Policy implications of the findings are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号